J. Cai et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4447–4450
4449
Table 2
could be an ideal replacement for the pyrimidine core as N7 (from
imidazole ring) could potentially form an intramolecular hydrogen
bond with thio-imidate NH (Fig. 3b) to further stabilize the transi-
tion state. This purine scaffold could potentially offer a more stable
thio-trapping nitrile war-head.
Inhibitory activity of purine compounds 11a–12c against human cathepsin S, K and
cellular activity in human JY cells (Lip10)
Lip10b
a
Compound
R
R0
IC50 (nM)
Cat S
Cat K
IC50 (nM)
The purine compounds were synthesized according to Scheme 2.
Displacement of 6-chlorine of 2,6-dichloro-9H-purine with a ben-
zylthio group followed by THP protection of the purine NH provided
compound 7. Suzuki coupling of compound 7 with a suitable boronic
acid or ester gives compound 8. Oxidation of sulfide by oxone pro-
vided sulfone with the concomitant deprotection of the THP group
which was then re-installed to afford compound 9. Replacement of
the sulfone with cyano-group gives compound 10. Removal of THP
group delivers the desired compound 11a–11c. Compound 11c
was further modified to afford compounds 12a–12c. Biological
results of compound 11a–11c and 12a–12c are shown in Table 2.
The purine-6-carbonitrile core appeared to be a good scaffold
for cathepsin S inhibition. In comparison with pyrimidine com-
pound 1, compound 11a roughly maintained the cathepsin S inhib-
itory activity while it is 15 times less active against human
cathepsin K. The SAR in the P2 aryl region appeared to be in agree-
ment with that observed in the pyrimidine series with EtO > -
MeO > H for cathepsin S inhibition. These 4-ethoxy analogs 11c,
12a, and 12b all have >50-fold selectivity over human cathepsin
K and no detectable activity against human cathepsin B and L at
11a
11b
11c
12a
12b
12c
H
H
H
H
Et
60
23
3.9
7.2
4.5
6.9
470
630
1072
2291
282
na
na
>10,000
na
509
59
MeO
EtO
EtO
EtO
EtO
HO(CH2)2
Me2N(CH2)3
117
a
Inhibition of recombinant human cathepsin S, K, L, and B in a fluorescence
assay, employing synthetic substrates. Data represents means of two experiments
in duplicate. All compounds shown do not have inhibitory activity against human
cathepsin B and L (IC50 >10,000 nM).
Measured by Western blot using human B lymphoblastoid cells, 500,000/ml,
mouse anti-CD74 Pin. 1 monoclonal antibody, 50% of the maximum activity of LHVS
in the same assay as IC50; na, not available.
b
from our docking studies, the remote ionic interactions with two
carboxylic residues (Asp61 and Glu59) might be the reason for
the lost selectivity. In contrast, there are no negatively charged res-
idues in human cathepsin S binding sites.
Three of the purine compounds were further assessed in the cell
based Lip10 accumulation assay. Although neutral compounds 11c
and 12b have low cellular activities, the basic compound 12c has
an IC50 of 59 nM. This high cellular activity is likely due to the pre-
viously reported lysosomotropic effect.19,20
Although compound 12c possesses good cellular activity, one of
its close analogs21 showed a half life of 17 min in our NMR based
nitrile stability studies. This poor stability prevented this class of
compounds from progressing any further.
10 lM. With a view to improving solubility and cellular activity,
a basic nitrogen side chain was attached to N9 nitrogen to give
compound 12c. This compound maintained cathepsin S inhibitory
activity, however it lost some selectivity over cathepsin K.
Although this basic nitrogen side chain seems to have no direct
interactions with any specific cathepsin K binding site residues
In summary, starting from a non-selective human cathepsins K
and S pyrimidine-2-carbonitrile based inhibitor 1, by using bio-X-
ray structural data and computer aided molecule design, purine-6-
carbonitrile compounds were synthesized to provide a novel class
selective human cathepsin S inhibitor.
Ph
Ph
S
Cl
S
N
b
N
N
N
a
N
N
N
N
Cl
N
N
H
N
H
Cl
N
Cl
O
References and notes
7
6
5
Ph
1. Gupta, S.; Singh, R. K.; Dastidar, S.; Ray, A. Expert Opin. Ther. Targets 2008, 12,
291.
Ph
O
O
N
S
S
N
2. Leroy, V.; Thurairatnam, S. Expert Opin. Ther. Patents 2004, 14, 301.
3. Cai, J.; Jamieson, C.; Moir, J.; Rankovic, Z. Expert Opin. Ther. Patents 2005, 15, 33.
4. Bromme, D.; Lecaille, F. Expert Opin. Invest. Drugs 2009, 18, 585.
5. Clark, A. K.; Yip, P. K.; Grist, J.; Gentry, C.; Staniland, A. A.; Marchand, F.;
Dehvari, M.; Wotherspoon, G.; Winter, J.; Ullah, J.; Bevan, S.; Malcangio, M.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10655.
6. Rankovic, Z.; Cai, J.; Fradera, X.; Dempster, M.; Mistry, A.; Mitchell, A.; Long, C.;
Hamilton, E.; King, A.; Boucharens, S.; Jamieson, C.; Gillespie, J.; Cumming, I.;
Uitdehaag, J.; Zeeland, M. Bioorg. Med. Chem. Lett. 2010, 20, 1488.
7. Rankovic, Z.; Cai, J.; Kerr, J.; Fradera, X.; Robinson, J.; Mistry, A.; Hamilton, E.;
McGarry, G.; Andrews, F.; Caulfield, W.; Cumming, I.; Dempster, M.; Waller, J.;
Scullion, P.; Martin, I.; Mitchell, A.; Long, C.; Baugh, M.; Westwood, P.;
Kinghorn, E.; Bruin, J.; Hamilton, W.; Uitdehaag, J.; Zeeland, M.; Potin, D.;
Saniere, L.; Fouquet, A.; Chevallier, F.; Deronzier, H.; Dorleans, C.; Nicolai, E.
Bioorg. Med. Chem. Lett. 2010, 20, 1524.
8. Altmann, E.; Cowan-Jacob, S. W.; Missbach, M. J. Med. Chem. 2004, 47, 5833.
9. Irie, O.; Ehara, T.; Iwasaki, A.; Yokokawa, F.; Sakaki, J.; Hirao, H.; Kanazawa, T.;
Teno, N.; Horiuchi, M.; Umemura, I.; Gunji, H.; Masuya, K.; Hitomi, Y.; Iwasaki,
G.; Nonomura, K.; Tanabe, K.; Fukaya, H.; Kosaka, T.; Snell, C. R.; Hallet, A.
Bioorg. Med. Chem. Lett. 2008, 18, 3959.
10. Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; Hitomi, Y.; Konishi, K.;
Kishida, M.; Toyao, A.; Masuya, K.; Gunji, H.; Sakaki, J.; Iwasaki, G.; Hirao, H.;
Kanazawa, T.; Tanabe, K.; Kosaka, T.; Hart, T. W.; Hallet, A. Bioorg. Med. Chem.
Lett. 2008, 18, 4642.
N
N
d, b
c
N
F3C
R
F3C
R
N
N
N
O
N
O
9a: R=H
9b: R=MeO
9c: R=EtO
8a: R=H
8b: R=MeO
8c: R=EtO
CN
N
CN
N
N
N
f
e
F3C
R
F3C
N
H
N
N
O
R
11a: R=H
11b: R=MeO
11c: R=EtO
10a: R=H
10b: R=MeO
10c: R=EtO
CN
N
g
N
F3C
R
N
N
R'
11. Irie, O.; Kosaka, T.; Kishida, M.; Sakaki, J.; Masuya, K.; Konishi, K.; Yokokawa, F.;
Ehara, T.; Iwasaki, A.; Iwaki, Y.; Hitomi, Y.; Toyao, A.; Gunji, H.; Teno, N.;
Iwasaki, G.; Hirao, H.; Kanazawa, T.; Tanabe, K.; Hiestand, P.; Malcangio, M.;
Fox, A. J.; Bevan, S. J.; Yaqoob, M.; Culshaw, A. J.; Hart, T. W.; Hallet, A. Bioorg.
Med. Chem. Lett. 2008, 18, 5280.
12. Irie, O.; Kosaka, T.; Ehara, T.; Yokokawa, F.; Kanazawa, T.; Hirao, H.; Iwasaki, A.;
Sakaki, J.; Teno, N.; Hitomi, Y.; Iwasaki, G.; Fukaya, H.; Nonomura, K.; Tanabe,
K.; Koizumi, S.; Uchiyama, N.; Bevan, S. J.; Malcangio, M.; Gentry, C.; Fox, A. J.;
Yaqoob, M.; Culshaw, A. J.; Hallet, A. J. Med. Chem. 2008, 51, 5502.
12a: R=EtO, R'=Et
12b: R=EtO, R'=HO(CH2)2
12c: R=EtO, R'=Me2N(CH2)3
Scheme 2. Reagents and conditions. (a) BnSH, TEA, EtOH, 60 °C, 1.5 h; (b) DHP,
TsOH, EtOAc, 50 °C, 2 h; (c) ArB(OH)2, Pd(Ph3P)4, K2CO3, NMP–H2O, 130 °C, 7 min;
(d) oxone, MeCN–H2O, 16 h; (e) KCN, DMSO, 90 °C, 7 min; (f) MeOH–DCM, TsOH,
2 h; (g) R0OH, Ph3P, DEAD, 1 h.