NJC
Paper
M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey and
J. W. Bats, Chem. – Eur. J., 2010, 16, 956–963.
Notes and references
1 Selected reviews: (a) G. Dyker, Angew. Chem., Int. Ed., 2000,
39, 4237–4239; (b) A. S. K. Hashmi, Chem. Rev., 2007, 107,
3180–3211; (c) A. Fu¨rstner and P. W. Davies, Angew. Chem.,
Int. Ed., 2007, 46, 3410–3449; (d) Z. Li, C. Brouwer and C. He,
Chem. Rev., 2008, 108, 3239–3265; (e) N. D. Shapiro and
F. D. Toste, Synlett, 2010, 675–691; ( f ) R. Dorel and
A. M. Echavarren, Chem. Rev., 2015, 115, 9028–9072;
10 (a) C. A. Tolman, Chem. Rev., 1977, 77, 313–348; (b) D. W.
Allen and B. F. Taylor, J. Chem. Soc., Dalton Trans., 1982,
51–54; (c) A. Muller, S. Otto and A. Roodt, Dalton Trans.,
2008, 650–657; (d) U. Beckmann, D. Su¨slu¨yan and P. C.
Kunz, Phosphorus, Sulfur Silicon Relat. Elem., 2011, 186,
2061–2070.
11 (a) I. R. Butler and R. L. Davies, Synthesis, 1996, 1350–1354;
¨
(g) D. Pflasterer and A. S. K. Hashmi, Chem. Soc. Rev.,
ˇ
ˇ
ˇ
(b) P. Stepnicka in Ferrocenes: Ligands, Materials and Bio-
2016, 45, 1331–1367; (h) W. Zi and F. D. Toste, Chem. Soc.
Rev., 2016, 45, 4567–4589; (i) A. S. K. Hashmi and
F. D. Toste, Modern Gold Catalyzed Synthesis, Wiley-VCH,
Weinheim, 2012; ( j) F. D. Toste and V. Michelet, Gold
Catalysis: An Homogeneous Approach, Imperial College Press,
London, 2014.
2 (a) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008,
108, 3351–3378; (b) W. Wang, G. B. Hammond and B. Xu,
J. Am. Chem. Soc., 2012, 134, 5697–5705; (c) D. Malhotra,
G. B. Hammond and B. Xu, Top. Curr. Chem., 2015, 357, 1–23;
(d) B. Ranieri, I. Escofet and A. M. Echavarren, Org. Biomol.
Chem., 2015, 13, 7103–7118; (e) C. A. Gaggioli, G. Ciancaleoni,
D. Zuccaccia, G. Bistoni, L. Belpassi, F. Tarantelli and
P. Belanzoni, Organometallics, 2016, 35, 2275–2285;
( f ) A. H. Christian, Z. L. Niemeyer, M. S. Sigman and
F. D. Toste, ACS Catal., 2017, 7, 3973–3978.
ˇ
ˇ
ˇ
molecules, ed. P. Stepnicka, Wiley, Chichester, 2008, ch. 5,
pp. 177–204.
ˇ
ˇ
ˇ
´ ˇ
´
´
ˇ
12 K. Skoch, I. Cısarova, F. Uhlık and P. Stepnicka, Dalton
Trans., 2018, 47, 16082–16101.
13 P. Nicpon and D. W. Meek, Inorg. Chem., 1966, 5, 1297–1298.
14 Coordination of a nitrile moiety is typically associated with
a shift of the nCRN band towards higher energies as the
result of electron density removal from a weakly antibond-
ing molecular orbital (lone pair at N). p-Back donation,
which increases the population of antibonding orbitals, is
rather weak. For references, see: K. Nakamoto, Infrared and
Raman Spectra of Inorganic and Coordination Compounds,
Part B: Applications in Coordination, Organometallic, and
Bioinorganic Chemistry, Wiley, New York, 5th edn, 1997,
sect. III-15, pp. 105–115.
15 A. S. K. Hashmi, M. C. B. Jaimes, A. M. Schuster and
F. Rominger, J. Org. Chem., 2012, 77, 6394–6408.
ˇ
ˇ
´ ˇ
´
ˇ
ˇ
3 K. Skoch, I. Cısarova and P. Stepnicka, Inorg. Chem., 2014,
53, 568–577.
´
´
16 E. Herrero-Gomez, C. Nieto-Oberhuber, S. Lopez, J. Benet-
Buchholz and A. M. Echavarren, Angew. Chem., Int. Ed.,
2006, 45, 5455–5459.
4 H. Schmidbaur and A. Schier, Z. Naturforsch., 2011, 66b,
329–350.
5 Additional references: (a) D. Wang, R. Cai, S. Sharma,
J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang,
X. Liu, J. L. Petersen and X. Shi, J. Am. Chem. Soc., 2012, 134,
9012–9019; (b) A. Homs, I. Escofet and A. M. Echavarren,
Org. Lett., 2013, 15, 5782–5785; (c) Z. Lu, J. Han,
G. B. Hammond and B. Xu, Org. Lett., 2015, 17, 4534–4537.
17 R. P. Pinnell, C. A. Megerle, S. L. Manatt and P. A. Kroon,
J. Am. Chem. Soc., 1973, 95, 977–978.
18 (a) D. Zuccaccia, L. Belpassi, A. Macchioni and F. Taranteli,
Eur. J. Inorg. Chem., 2013, 4121–4135; (b) M. Jia and
M. Bandini, ACS Catal., 2015, 5, 1638–1652; (c) J. Schiessl,
¨
J. Schulmeister, A. Doppiu, E. Worner, M. Rudolph,
ˇ
ˇ
´ ˇ
´
ˇ
ˇ
6 K. Skoch, I. Cısarova and P. Stepnicka, Chem. – Eur. J., 2015,
R. Karch and A. S. K. Hashmi, Adv. Synth. Catal., 2018,
360, 2493–2502.
21, 15998–16004.
7 B. Michelet, D. Lebœuf, C. Bour, K. Skoch, F. Hork´y, P. Stepnicka
ˇ
ˇ
ˇ
ˇ
¨
19 A. Zhdanko, M. Strobele and M. E. Maier, Chem. – Eur. J.,
and V. Gandon, ChemPlusChem, 2017, 82, 442–448.
2012, 18, 14732–14744.
20 M. Kumar, G. B. Hammond and B. Xu, Org. Lett., 2014, 16,
3452–3455.
ˇ
ˇ
ˇ
´ ˇ
´
ˇ
8 K. Skoch, I. Cısarova, J. Schulz, U. Siemeling and P. Stepnicka,
Dalton Trans., 2017, 46, 10339–10354.
9 (a) A. S. K. Hashmi, J. P. Weyrauch, W. Frey and J. W. Bats, Org.
Lett., 2004, 6, 4391–4394; (b) A. S. K. Hashmi, M. Rudolph,
S. Schymura, J. Visus and W. Frey, Eur. J. Org. Chem., 2006,
4905–4909; (c) A. S. K. Hashmi, A. M. Schuster and F. Rominger,
Angew. Chem., Int. Ed., 2009, 48, 8247–8249; (d) J. P. Weyrauch,
21 Teles et al. concluded similarly in their seminal paper from
1998: J. H. Teles, S. Brode and M. Chabanas, Angew. Chem.,
Int. Ed., 1998, 37, 1415–1418.
22 B. Milde, M. Lohan, C. Schreiner, T. Ruffer and H. Lang,
¨
Eur. J. Inorg. Chem., 2011, 5437–5449.
A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schetter, A. Littmann, 23 M. L. Kuznetsov, Russ. Chem. Rev., 2002, 71, 265–282.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019
New J. Chem.