Crystal data for cis-2a (colorless chunk): C21H25NO2, M = 323.42,
ꢀ
Triclinic, space group P1, a = 9.354(4) A, b = 9.792(5) A, c =
atropisomers of 1a–d likely undergoes Type II reaction in a
pathway as suggested by Whitten and co-workers19 for
achiral benzoylformamides. The presence of ortho-tert-butyl
substituent is not expected to affect the type of intermediates
proposed by Whitten and co-workers,19 but is expected to
affect the relative population of the reactive intermediates
(ketene-imine pair could be converted to the zwitterionic
intermediate Z2 by heterolytic N–CQO bond cleavage).
Stereochemical analysis of the photoproducts (Fig. 1) indicates
that the configuration of the chiral axis is maintained in the
intermediate(s) during the course of the phototransformation.
We believe that the relative rate of reaction from the
excited-state/intermediates(s) leading to 2 is favored over the
N–C(Aryl) bond rotation. Due to the reduced C–N–C bond
angle in 2, the rotational barrier of the N–C(Aryl) chiral axis
in the photoproduct 2 is lowered when compared to the
reactant 1. This enables the conversion of the isolated optically
pure trans-2 isomer to the ent-cis-2 isomer without affecting
the C-5 stereogenic center resulting in enantiomeric resolution
of cis-2 oxazolidin-4-one photoproduct with high optical
purity (ee values >98%).22
10.162(5) A, a = 79.581 (9)1, b = 85.526 (10)1 g = 87.199 (10), V =
912.1(8) A3, z = 2, 273 K, crystal size 0.66 ꢁ 0.22 ꢁ 0.14 mm,
m(Mo-Ka) = 0.075 mmꢀ1, 7296 reflections measured, 3296 inde-
pendent reflections (Rint = 0.0597). The final R(I > 2s(I))/R(all data)
were: R1 [%] = 5.58/12.01 and wR2 [%] = 14.01/17.63. The goodness
of fit on F2 was 0.938. Crystal data for trans-2d (colorless chunk):
C24H29NO2, M = 363.48, Monoclinic, space group P21/n, a =
12.223(8) A, b = 10.426(6) A, c = 16.072(10) A, b = 93.259 (9)1,
V = 2045(2) A3, z = 4293 K, crystal size 0.4 ꢁ 0.4 ꢁ 0.36 mm,
m(Mo-Ka) = 0.074 mmꢀ1, 13 837 reflections measured, 3657 inde-
pendent reflections (Rint = 0.0555). The final R(I > 2s(I))/R(all data)
were: R1 [%] = 4.64/6.22 and wR2 [%] = 12.63/13.94. The goodness
of fit on F2 was 1.059.
Crystal data for cis-2d (colorless plate): C24H29NO2, M = 363.48,
Monoclinic, space group P21/n, a = 8.784(2) A, b = 10.399(2) A, c =
22.804(5) A, b = 99.457 (3)1, V = 2054.6(7) A3, z = 4293 K, crystal
size 0.56 ꢁ 0.50 ꢁ 0.15 mm, m(Mo-Ka) = 0.074 mmꢀ1, 18 137
reflections measured, 4488 independent reflections (Rint = 0.0489).
The final R(I > 2s(I))/R(all data) were: R1 [%] = 5.05/7.84 and
wR2 [%] = 13.86/16.20. The goodness of fit on F2 was 1.069.
1 Y. Inoue, in Chiral Photochemistry, ed. Y. Inoue and
V. Ramamurthy, Marcel Dekker, New York, 2004, pp. 129.
2 Y. Inoue, Chem. Rev., 1992, 92, 741.
3 H. Rau, Chem. Rev., 1983, 83, 535.
4 C. Muller and T. Bach, Aust. J. Chem., 2008, 61, 557.
5 B. Giese, P. Wettstein, C. Stahelin, F. Barbosa, M. Neuburger,
M. Zehnder and P. Wessig, Angew. Chem., Int. Ed., 1999, 38, 2586.
6 A. G. Griesbeck, W. Kramer and J. Lex, Angew. Chem., Int. Ed.,
2001, 40, 577.
7 A. Sinicropi, F. Barbosa, R. Basosi, B. Giese and M. Olivucci,
Angew. Chem., Int. Ed., 2005, 44, 2390.
8 T. Mori, R. G. Weiss and Y. Inoue, J. Am. Chem. Soc., 2004, 126,
8961.
9 J. Sivaguru, A. Natarajan, L. S. Kaanumalle, J. Shailaja, S. Uppili,
A. Joy and V. Ramamurthy, Acc. Chem. Res., 2003, 36, 509.
10 M. Sakamoto, T. Iwamoto, N. Nono, M. Ando, W. Arai, T. Mino
and T. Fujita, J. Org. Chem., 2003, 68, 942.
11 A. J.-L. Ayitou, J. Jesuraj, N. Barooah, A. Ugrinov and
J. Sivaguru, J. Am. Chem. Soc., 2009, 131, 11314.
12 A. J.-L. Ayitou and J. Sivaguru, J. Am. Chem. Soc., 2009, 131,
5036.
Our investigation on employing axially chiral benzoyl-
formamides to chiral oxazolidin-4-one has opened up the
opportunity to resolve enantiomers with high optical purity
in good yields. The mechanistic analysis indicates that the
N–C(Aryl) chiral axis is maintained during the phototrans-
formation in solution. This provides organic chemists with a
complementary methodology to resolve enantiomers with high
optical purity.1–4
Notes and references
z X-ray structures of the reactants and the photoproducts are
available from Cambridge Crystallographic Data Center. (CCDC
deposition #759989 to 759993).
XRD Structure determination: Single crystal X-ray diffraction data
sets were collected on a SIEMENS diffractometer with a 1 K CCD
area detector (graphite-monochromated Mo-Ka radiation, crystals
protected with Parathone-N oil). All structures, except cis-2a, were
solved by direct methods and refined on F2 using the SHELXL, after
integration and absorption corrections with SAINT 6.45 A.
Compound cis-2a was solved by direct method, but the integrations
and absorption corrections were performed with SAINT 7.34 A and
SADABS version 2007/4.
Crystal data for 1a (colorless plate): C21H25NO2, M = 323.42,
Monoclinic, space group P21/n, a = 8.698(4) A, b = 16.685(8) A, c =
13.029(6) A, b = 99.478 (9)1, V = 1864.9(15) A3, z = 4273 K, crystal
size 0.78 ꢁ 0.72 ꢁ 0.10 mm, m(Mo-Ka) = 0.073 mmꢀ1, 13 357
reflections measured, 3261 independent reflections (Rint = 0.0349).
The final R(I > 2s(I))/R(all data) were: R1 [%] = 4.51/7.48 and
wR2 [%] = 13.77/15.68. The goodness of fit on F2 was 1.030.
Crystal data for 1d (colorless prism): C24H29NO2, M = 363.48,
Monoclinic, space group P21/c, a = 12.312(3) A, b = 8.543(2) A, c =
19.637(5) A, b = 94.405 (4)1, V = 2059.4(8) A3, z = 4293 K, crystal
size 0.66 ꢁ 0.40 ꢁ 0.20 mm, m(Mo-Ka) = 0.074 mmꢀ1, 16 527
reflections measured, 4062 independent reflections (Rint = 0.0610).
The final R(I > 2s(I))/R(all data) were: R1 [%] = 4.69/6.93 and
wR2 [%] = 12.51/14.29. The goodness of fit on F2 was 1.034.
13 D. P. Curran, H. Qi, S. J. Geib and N. C. DeMello, J. Am. Chem.
Soc., 1994, 116, 3131.
14 D. P. Curran, G. R. Hale, S. J. Geib, A. Balog, Q. B. l. Cass,
A. L. G. Degani, M. Z. Hernandes and L. C. G. Freitas,
Tetrahedron: Asymmetry, 1997, 8, 3955.
15 J. Clayden, Chem. Commun., 2004, 127.
16 A. Honda, K. M. Waltz, P. J. Carroll and P. J. Walsh, Chirality,
2003, 15, 615.
17 H. Aoyama, M. Sakamoto, K. Kuwabara, K. Yoshida and
Y. Omote, J. Am. Chem. Soc., 1983, 105, 1958.
18 P. J. Wagner and B.-S. Park, Org. Photochem., 1991, 11, 227–366.
19 C. A. Chesta and D. G. Whitten, J. Am. Chem. Soc., 1992, 114,
2188.
20 R. Wang, C. Chen, E. Duesler and P. S. Mariano, J. Org. Chem.,
2004, 69, 1215.
21 A. Natarajan, J. T. Mague and V. Ramamurthy, J. Am. Chem.
Soc., 2005, 127, 3568.
22 Refer to supplementary informationw.
23 O. Kitagawa, M. Fujita, M. Kohriyama, H. Hasegawa and
T. Taguchi, Tetrahedron Lett., 2000, 41, 8539.
24 S. Muthukrishnan, J. Sankaranarayanan, T. C. S. Pace,
A. Konosonoks, M. E. DeMichiei, M. J. Meese, C. Bohne and
A. D. Gudmundsdottir, J. Org. Chem., 2010, 75, 1293.
ꢂc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4791–4793 | 4793