B, 2006, 110, 20993; (b) C. J. Bhongale, C.-W. Chang, C.-S. Lee,
E. W.-G. Diau and C.-S. Hsu, J. Phys. Chem. B, 2005, 109, 13472; (c)
S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765.
3 (a) J. Cornil, D. A. Dos Santos, X. Crispin, R. Silbey and J. L. Bredas,
J. Am. Chem. Soc., 1998, 120, 1289; (b) X. Liu, C. He, X. Hao, L. Tan,
Y. Li and K. S. Ong, Macromolecules, 2004, 37, 5965.
4 (a) L. H. Chan, R. H. Lee, C. F. Hsieh, H. C. Yeh and C. T. Chen,
J. Am. Chem. Soc., 2002, 124, 6469; (b) S. Wang, W. J. Oldham,
R. A. Hudack, Jr. and G. C. Bazan, Jr., J. Am. Chem. Soc., 2000, 122,
5695; (c) Y. Li, J. Ding, M. Day, T. Tao, J. Lu and M. D’iorio, Chem.
Mater., 2003, 15, 4936; (d) F. Cherious and L. Guyard, Adv. Funct.
Mater., 2003, 11, 305.
5 (a) R. Deans, J. Kim, M. R. Machacek and T. M. Swager, J. Am.
Chem. Soc., 2000, 122, 8565; (b) B. K. An, S. K. Kwon, S. D. Jung and
S. Y. Park, J. Am. Chem. Soc., 2002, 124, 14410.
6 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun.,
2001, 1740; (b) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong,
S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater.,
2003, 15, 1535; (c) G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun,
D. Ma, X. Zhan, Q. Peng, Z. Shuai, B. Z. Tang, D. Zhu, W. Fang and
Y. Luo, J. Am. Chem. Soc., 2005, 127, 6335; (d) H. Chen, W. Y. Lam,
J. Luo, Y. Ho, B. Z. Tang, D. Zhu, M. Wong and H. S. Kwok, Appl.
Phys. Lett., 2002, 81, 574; (e) Y. Dong, J. W. Y. Lam, Z. Li, H. Tong,
Y. Dong, X. Feng and B. Z. Tang, J. Inorg. Organomet. Polym. Mater.,
2005, 15, 287.
aggregation because the dye molecules become progressively less
soluble in the mixtures with higher glycerol contents. As can be
seen from Fig. 2(B) and Fig. S3(A) (ESI{), decreasing the solution
temperatures leads to enhanced emissions. The viscosity and
temperature effects prove that the RIR process is indeed involved
in the AIE system.
Different from 1–3, dyes 4–6 are emissive in the solution state.
Their aggregates, however, are more emissive (Fig. S4, ESI{). The
dyes are thus AIEE emitters. Their WF values continuously
increase with increasing the water contents in the water/acetone
mixtures and reach maximums at a water content of y30%
(Fig. S5, ESI{). The WF values decrease with further increasing the
water contents because of the poor solubilities of the dyes in the
mixtures with higher water contents, as evidenced by the turbidity
of the mixtures. Again, when the dyes were blended with PMMA,
the resultant films emitted lights in very high intensities (Fig. S4,
ESI{).
The PL intensities of THF solutions of 4–6 were enhanced by
decreasing the solution temperatures (Fig. S3(B), ESI{), suggesting
that the RIR process is also involved in the AIEE systems. It is
interesting to note that their WF values increase in the order of 4 A
5 A 6 (Table 1), while the numbers of their carbazolyl substituents
decrease in the order of 6 A 5 A 4. The WF value of 6 is the
lowest, although it possesses the highest number of carbazolyl
groups. This is easily understandable: the more the carbazolyl
rotors, the higher the probability for intramolecular rotations,
hence the lower the WF value.
Given that a carbozole solution is emissive,13–15 it is no wonder
carbazolylbenzenes 4–6 are emissive in the dilute solutions. In the
PMMA films, the carbazolyl blades may experience p–p stacking
interaction, which red-shifts the dye emissions (Table 1). The p–p
stacking should decrease the PL intensities of the dyes, but the
RIR process in the solid state enhances light emission. The net
outcome of these two antagonistic processes is the observed AIEE
effect, indicating that the RIR process has played a predominant
role in affecting the PL behaviours of the dye aggregates.
In summary, in this work, we have successfully developed a new
series of AIE- (1–3) and AIEE-active (4–6) luminophors with very
simple structures. All these dyes are ‘‘pure’’ aromatic compounds
without olefinic functionality and thus should be very stable. With
the tremendous synthetic flexibility offered by the rich reactions in
aromatic chemistry, it is anticipated that many more AIE(E) dyes
can be created with minimum efforts. Our results have proved that
the RIR process plays a critical role in not only AIE but also
AIEE systems. Further studies on the AIE(E) dyes with visible
emissions are under way in our laboratories.
7 M. Freemantle, Chem. Eng. News, 2001, 79(41), 29.
8 (a) H. C. Yeh, S. J. Yeh and C. T. Chen, Chem. Commun., 2003, 2632;
(b) C. J. Bhongale and C. S. Hsu, Angew. Chem., Int. Ed., 2006, 45,
1404; (c) W. Holzer, A. Penzkofer, R. Stockmann, H. Meysel,
H. Liebegott and H. H. Horhold, Polymer, 2001, 42, 3183; (d)
S. Jayanty and T. P. Radhakrishnan, Chem. Eur. J., 2004, 10, 791; (e)
Z. Wang, H. Shao, J. Ye, L. Tang and P. Lu, J. Phys. Chem. B, 2005,
109, 19627; (f) K. Itami, Y. Ohashi and J. Yoshida, J. Org. Chem., 2005,
70, 2778; (g) M. Han and M. Hara, J. Am. Chem. Soc., 2005, 127,
10951; (h) H. J. Tracy, J. L. Mullin, W. T. Klooster, J. A. Martin,
J. Haug, S. Wallace, I. Rudloe and K. Watts, Inorg. Chem., 2005, 44,
2003; (i) K. Itami and J. Yoshida, Chem. Eur. J., 2006, 12, 3966; (j)
C. Belton, D. F. O’Brien, W. J. Blau, A. J. Cadby, P. A. Lane,
D. D. C. Bradley, H. J. Bryne, R. Stockmann and H. H. Horhold, Appl.
Phys. Lett., 2001, 78, 1059.
9 (a) H. Tong, Y. Dong, M. Ha¨ußler, Z. Li, B. Mi, H. S. Kwok and
B. Z. Tang, Mol. Cryst. Liq. Cryst., 2006, 446, 183; (b) H. Tong,
Y. Q. Dong, M. Haussler, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams,
J. Sun and B. Z. Tang, Chem. Commun., 2006, 1133; (c) J. Chen, B. Xu,
X. Ouyang, B. Z. Tang and Y. Cao, J. Phys. Chem. A, 2004, 108, 7522;
(d) H. Tong, Y. Dong, M. Ha¨ußler, Y. Hong, J. W. Y. Lam,
H. H. Y. Sung, I. D. Williams, H. S. Kwok and B. Z. Tang, Chem.
Phys. Lett., 2006, 428, 326; (e) H. Tong, Y. Hong, Y. Dong,
M. Haussler, J. W. Y. Lam, Z. Li, Z. F. Guo, Z. H. Guo and
B. Z. Tang, Chem. Commun., 2006, 3705.
10 (a) Z. Li, Y. Q. Dong, B. Mi, Y. Tang, M. Haussler, H. Tong,
Y. P. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao,
I. D. Williams, H. S. Kwok and B. Z. Tang, J. Phys. Chem. B, 2005,
109, 10061; (b) Y. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang and
K. S. Wong, J. Phys. Chem. B, 2005, 109, 1135; (c) Y. Ren, Y. Dong,
J. W. Y. Lam, B. Z. Tang and K. S. Wong, Chem. Phys. Lett., 2005,
402, 468; (d) S. Yin, Q. Peng, Z. Shuai, W. Fang, Y. Wang and Y. Luo,
Phys. Rev. B, 2006, 73, 205409.
11 In the silole system, the absolute quantum yields (WF,a) of the AIE-active
siloles are higher than their relative ones (WF,r): for example, WF,a of
1-methylpentaphenylsilole (85%)6a is four-fold higher than its WF,r
(21%)6c.
We acknowledge the financial support from the National
Natural Science Foundation of China (Project Nos. 20402011,
20674059 and 90201002), the National Basic Research ‘‘973’’
Program, the Research Grants Council of Hong Kong (Project
Nos. 602706, 603505 and HKU2/05C), and the Hubei Provincial
Government.
12 Y. Q. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H. Y. Sung,
I. D. Williams and B. Z. Tang, Chem. Commun., 2006, DOI: 10.1039/
b613157c.
13 N. J. Turro, Modern Molecular Photochemistry, University Science
Books, Mill Valley, CA, 1991.
Notes and references
14 (a) W. Zhu, M. Hu, R. Yao and H. Tian, J. Photochem. Photobiol. A:
Chem., 2003, 154, 169; (b) Y. Liu, G. Yu, H. Li, H. Tian and D. Zhu,
Thin Solid Films, 2002, 417, 107.
1 (a) H. Murata, Z. H. Kafafi and M. Uchida, Appl. Phys. Lett., 2002, 80,
189; (b) S. J. Toal, K. A. Jones, D. Magde and W. C. Trogler, J. Am.
Chem. Soc., 2005, 127, 11661.
15 P. P. S. Lee, Y. Geng, H. S. Kwok and B. Z. Tang, Thin Solid Films,
2000, 363, 149.
2 (a) Z. Xie, B. Yang, W. Xie, L. Liu, F. Shen, H. Wang, X. Yang,
Z. Wang, Y. Li, M. Hanif, G. Yang, L. Ye and Y. Ma, J. Phys. Chem.
72 | Chem. Commun., 2007, 70–72
This journal is ß The Royal Society of Chemistry 2007