pubs.acs.org/joc
which make them attractive candidates for organic light-emitting
devices (OLEDs).6
Selective Synthesis of Either Isoindole- or
Isoindoline-1-carboxylic Acid Esters by
Pd(0)-Catalyzed Enolate Arylation
However, the instability of the isoindole nucleus together with
the lack of a general method for the synthesis of substituted deri-
vatives have frequently restricted their use, creating a demand
for new and straightforward methodologies to access these
substrates. Apart from the aromatization of existing rings, the
classical and most generally applicable methods for the synthesis
of isoindoles include cyclizative condensations of o-disubstitu-
ted benzenes, elimination reactions (inter alia from isoindolinium
salts, isoindoline N-oxides, or 2-substituted isoindolines), retro-
cycloaddition processes, and nucleophilic addition reactions to
phthalamidines.7 Recent progress in synthetic organic chemistry
has led to the development of new methods for the preparation
of diversely substituted isoindoles.8
ꢀ
Daniel Sole* and Olga Serrano
´
ꢁ
ꢁ
Laboratori de Quımica Organica, Facultat de Farmacia,
and Institut de Biomedicina (IBUB), Universitat de Barcelona,
08028 Barcelona, Spain
Received May 31, 2010
Regarding the isoindoline family, the synthesis of 1- and
1,3-substituted derivatives is also clearly underdeveloped,9
and very few reports about metal- or organocatalyzed
syntheses of isoindolines can be found in the literature.10
As part of our ongoing program on the synthesis of nitro-
gen heterocycles,11 we have recently reported an efficient
methodology for the synthesis of indole-3-carboxylic acid
derivatives based on the palladium-catalyzed intramolecular
R-arylation of β-(2-iodoanilino) esters12a and amides.12b
Interestingly, in the ester series, depending on the reaction
conditions, the R-arylation reaction gave access to either
indoles or indolines (Scheme 1).12a
Two efficient palladium-catalyzed intramolecular R-aryla-
tion reactions of R-amino acid esters have been developed
that allow either 1-isoindolecarboxylic acid esters or the
corresponding isoindolines to be selectively synthesized
simply by a slight change of reaction conditions.
These studies in the indole series and our previous dis-
covery that isoindoles could be directly obtained by seq-
uential palladium-catalyzed arylation/dehydrogenation of
R-amino ketones11c (Scheme 2) encouraged us to examine
the cyclization of R-amino esters to establish a general method
for the synthesis of 1-isoindolecarboxylic acid esters.13
The isoindole moiety and its reduced counterpart isoindo-
line (2,3-dihydro-1H-isoindole) have become attractive tar-
gets in organic and medicinal chemistry. These heterocyclic
frameworks are an integral part of the structure of some bio-
logically active compounds1 and a few naturally occurring
products.2 Moreover, the isoindoles have been widely used for
their high level of reactivity in cycloaddition reactions3 and, more
recently, for their fluorescent and electroluminescent properties,4,5
(6) (a) Naef, R. Dyes Pigments 1985, 6, 233–249. (b) Gauvin, S.; Santerre,
F.; Dodelet, J. P.; Ding, Y.; Hlil, A. R.; Hay, A. S.; Anderson, J.; Armstrong,
N. R.; Gorjanc, T. C.; D’Iorio, M. Thin Solid Films 1999, 353, 218–222.
(c) Ding, Y.; Hay, A. S. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3293–
3299. (d) Mi, B.-X.; Wang, P.-F.; Liu, M.-W.; Kwong, H.-L.; Wong, N.-B.;
Lee, C.-S.; Lee, S.-T. Chem. Mater. 2003, 15, 3148–3151.
(7) (a) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II,
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford,
1996; Vol. 2, Chapter 3, pp 119-206. (b) Donohoe, T. J. Product class 14:
1H- and 2H-isoindoles. Sci. Synth. 2001, 10, 653–692.
(1) (a) Bare, T. M.; Draper, C. W.; McLaren, C. D.; Pullan, L. M.; Patel,
J.; Patel, J. B. Bioorg. Med. Chem. Lett. 1993, 3, 55–60. (b) Portevin, B.;
Tordjman, C.; Pastoureau, P.; Bonnet, J.; De Nanteuil, G. J. Med. Chem.
2000, 43, 4582–4593. (c) Kukkola, P. J.; Bilci, N. A.; Ikeler, T. J.; Savage, P.;
Shetty, S. S.; DelGrande, D.; Jeng, A. Y. Bioorg. Med. Chem. Lett. 2001, 11,
1737–1740. (d) Diana, P.; Martorana, A.; Barraja, P.; Lauria, A.; Montalbano,
A.; Americo, A.; Dattolo, G.; Cirrincione, G. Bioorg. Med. Chem. 2007, 15,
343–349. (e) Diana, P.; Martorana, A.; Barraja, P.; Montalbano, A.; Dattolo,
G.; Cirrincione, G.; Dall’Acqua, F.; Salvador, A.; Vedaldi, D.; Basso, G.; Viola,
G. J. Med. Chem. 2008, 51, 2387–2399. (f) Van Goethem, S.; Van der Veken, P.;
(8) (a) Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G. Chem.
Commun. 2006, 661–662. (b) Duan, S.; Sinha-Mahapatra, D. K.; Herndorn,
J. W. Org. Lett. 2008, 10, 1541–1544. (c) Hui, B. W.-Q.; Chiba, S. Org. Lett.
2009, 11, 729–732. (d) Heugebaert, T. S. A.; Stevens, C. V. Org. Lett. 2009,
11, 5018–5021. (e) Ohmura, T.; Kijima, A.; Suginome, M. J. Am. Chem. Soc.
2009, 131, 6070–6071. (f) Yasmin, N.; Ray, Y. K. Synlett 2010, 924–930.
(9) Clary, C. N.; Parvez, M.; Back, T. G. Org. Biomol. Chem. 2009, 7,
1226-1230 and references cited therein.
ꢀ
Dubois, V.; Soroka, A.; Lambeir, A.-M.; Chen., X.; Haemers, A.; Scharpe, S.;
De Meester, I.; Augustyns, K. Bioorg. Med. Chem. Lett. 2008, 18, 4159–4162.
(2) See for example: (a) Kikuchi, Y.; Nishinaga, T.; Inagaki, M.; Koyama, M.
Tetrahedron Lett. 1968, 2077–2081. (b) Zhang, Y.; Wang., T.; Pei, Y.; Hua, H.;
Feng, B. J. Antibiot. 2002, 55, 693–695. (c) Horiuchi, M.; Ohnishi, K.; Iwase, N.;
Nakajima, Y.; Tounai, K.; Yamashita, M.; Yamada, Y. Biosci. Biotechnol.
Biochem. 2003, 67, 1580–1583. (d) Nakatani, T.; Nishimura, E.; Noda, N.
J. Nat. Med. 2006, 60, 261–263.
(10) For recent examples, see: (a) Gaertzen, O.; Buchwald, S. L. J. Org.
Chem. 2002, 67, 465–475. (b) Enders, D.; Narine, A. A.; Toulgoat, F.;
Bisschops, T. Angew. Chem., Int. Ed. 2008, 47, 5661–5665. (c) Fustero, S.;
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
Moscardo, J.; Jimenez, D.; Perez-Carrion, M. D.; Sanchez-Rosello, M.; del
ꢀ
Pozo, C. Chem.;Eur. J. 2008, 14, 9868–9872.
ꢀ
(11) (a) Sole, D.; Vallverdu, L.; Bonjoch, J. Adv. Synth. Catal. 2001, 343,
439–442. (b) Sole, D.; Vallverdu, L.; Peidro, E.; Bonjoch, J. Chem. Commun.
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
2001, 1888–1889. (c) Sole, D.; Vallverdu, L.; Solans, X.; Font-Bardia, M.;
(3) For recent examples, see: (a) Chen, Y.-L.; Lee, M.-H.; Wong, W.-Y.;
€
Lee, A. W. M. Synlett 2006, 2510–2512. (b) Chen, Z.; Muller, P.; Swager,
T. M. Org. Lett. 2006, 8, 273–276. (c) Rincon, R.; Plumet, J. Synlett 2008,
911–913.
ꢀ
Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587–1594. (d) Sole, D.; Urbaneja,
ꢀ
X.; Bonjoch, J. Tetrahedron Lett. 2004, 45, 3131–3135.
ꢀ
ꢀ
(12) (a) Sole, D.; Serrano, O. J. Org. Chem. 2008, 73, 2476–2479. (b) Sole,
(4) Simons, S. S., Jr.; Johnson, D. F. J. Org. Chem. 1978, 43, 2886–2891.
(5) Amon, M.; Ligneau, X.; Camelin, J.-C.; Berrebi-Bertrand, I.;
Schwartz, J.-C.; Stark, H. ChemMedChem 2007, 2, 708–716.
D.; Serrano, O. J. Org. Chem. 2008, 73, 9372–9378.
(13) (a) Cignarella, G.; Savelli, F.; Sanna, P. Synthesis 1975, 252–253.
(b) Cignarella, G.; Cerri, R.; Grella, G.; Sanna, P. Gazz. Chim. Ital. 1976,106, 65–75.
DOI: 10.1021/jo101054j
r
Published on Web 08/25/2010
J. Org. Chem. 2010, 75, 6267–6270 6267
2010 American Chemical Society