U. Abel et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4911–4917
4917
(TC mean for 22 at 1 mg/kg b.i.d. = 97.2 mg/dl vs 121.0 mg/dl for
1 mg/kg b.i.d. 6-ECDCA, p <0.05).
mediated FXR activation in multiple clinically relevant disease
models.
With respect to compound accumulation after multiple dosing
the differences are striking (Table 2 in supplementary data):
Whereas all three compounds tested show comparable levels of
low plasma but very high liver concentrations at 4 h after the last
administration, suggesting a high first pass effect for these com-
pounds, organ concentrations at 24 h after the last administration
differ dramatically between the isoxazole derivatives and 6-ECD-
CA. For 13, 22, and its metabolite 23 only minute amounts were
detectable in either plasma or liver whereas 6-ECDCA showed
nearly unchanged levels in plasma and liver, indicative of either
highly efficient enterohepatic circulation, unusual stability, or stor-
age in the liver.
The absence of 22 and 23 24 h after the last administration de-
spite the proposed entereohepatic cycling of the taurine amide
may be explained by the fact that the taurine amide is only one
of a few key metabolites including the N-demethylated species
and the glucuronide. The glucuronide of 22 may not be accepted
by the bile acid transporters which would result ultimately in fecal
loss given that cleavage of glucuronide by intestinal bacteria is not
complete. Despite, the relatively rapid removal of the isoxazoles 13
and 22 from the hepatobilliary system, they show pharmacody-
namic effects in the db/db mouse comparable or better than those
of 6-ECDCA which has a dramatically longer duration of exposure.
In summary we have made a series of potent FXR agonists that
mimic the structure of the parent compound GW4064 but are de-
void of the stilbene moiety. A key functional feature of this series is
either the free terminal benzoic acid or an amide conjugate thereof
that can extend the position of the acidic moiety by two atoms
without significantly losing potency in biochemical or cellular
FXR assays. When these extended derivatives such as 14, 17, 21,
or 23 are docked into the crystal structure of GW4064-bound
FXR, the structurally related elements adopt very similar positions
to those of GW4064. The terminal acid, however, which is believed
to form an ion bridge to Arg331 in the GW4064-FXR co-crystal
might change its ion bridge partner to Arg264.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Parks, D. J.; Blanchard, S. G.; Bledsoe, R. K.; Chandra, G.; Consler, T. G.; Kliewer,
S. A.; Stimmel, J. B.; Willson, T. M.; Zavacki, A. M.; Moore, D. D.; Lehmann, J. M.
Science 1999, 284, 1365.
2. Makishima, M.; Okamoto, A. Y.; Repa, J. J.; Tu, H.; Learned, R. M.; Luk, A.; Hull,
M. V.; Lustig, K. D.; Mangelsdorf, D. J.; Shan, B. Science 1999, 284, 1362.
3. Forman, B. M.; Goode, E.; Chen, J.; Oro, A. E.; Bradley, D. J.; Perlmann, T.;
Noonan, D. J.; Burka, L. T.; McMorris, T.; Lamph, W. W.; Evans, R. M.;
Weinberger, C. Cell 1995, 81, 687.
4. Higashiyama, H.; Kinoshita, M.; Asano, S. Acta Histochem. 2008, 110, 86.
5. Bookout, A. L.; Jeong, Y.; Downes, M.; Yu, R.; Evans, R. M.; Mangelsdorf, D. J.
6. Cariou, B.; van Harmelen, K.; Duran-Sandoval, D.; van Dijk, T. H.; Grefhorst, A.;
Abdelkarim, M.; Caron, S.; Torpier, G.; Fruchart, J. C.; Gonzalez, F. J.; Kuipers, F.;
Staels, B. J. Biol. Chem. 2006, 281, 11039.
7. Zhang, Y.; Lee, F. Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F. J.; Willson, T. M.;
Edwards, P. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1006.
8. Ma, K.; Saha, P. K.; Chan, L.; Moore, D. D. J. Clin. Invest. 2006, 116, 1102.
9. Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C. L.; McDonald, J. G.;
Luo, G.; Jones, S. A.; Goodwin, B.; Richardson, J. A.; Gerard, R. D.; Repa, J. J.;
Mangelsdorf, D. J.; Kliewer, S. A. Cell Metab. 2005, 2, 217.
10. Jones, S. Mol. Pharmacol. 2008, 5, 42.
11. Sanyal, A. J.; Mudaliar, S.; Henry, R. R.; Marschall, H. U.; Morrow, L.; Sciacca, C.
I.; Dillon, P.; Clopton, P.; Kipnes, M.; Shapiro, D. Hepatology 2009, 50, 389A.
12. Shapiro, D.; March, B.; Eliot, L.; duBois, R.; Pruzanski, M. Hepatology 2009, 50,
770A.
13. Maloney, P. R.; Parks, D. J.; Haffner, C. D.; Fivush, A. M.; Chandra, G.; Plunket, K.
D.; Creech, K. L.; Moore, L. B.; Wilson, J. G.; Lewis, M. C.; Jones, S. A.; Willson, T.
M. J. Med. Chem. 2000, 43, 2971.
14. (a) Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D.
N.; Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Parks, D. J.; Todd,
D.; Williams, S. P.; Wisely, G. B. Bioorg. Med. Chem. Lett. 2009, 19, 2969; (b) The
photolability of GW4064 was compared to the photolability of 22 and 37, see
Supplementary data.
15. Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech,
K. L.; Deaton, D. N.; Jones, S. A.; Kaldor, I.; Liu, Y.; Madauss, K. P.; Marr, H. B.;
McFadyen, R. B.; Miller, A. B.; Iii, F. N.; Parks, D. J.; Spearing, P. K.; Todd, D.;
Williams, S. P.; Wisely, G. B. Bioorg. Med. Chem. Lett. 2008, 18, 4339.
16. Feng, S.; Yang, M.; Zhang, Z.; Wang, Z.; Hong, D.; Richter, H.; Benson, G. M.;
Bleicher, K.; Grether, U.; Martin, R. E.; Plancher, J. M.; Kuhn, B.; Rudolph, M. G.;
Chen, L. Bioorg. Med. Chem. Lett. 2009, 19, 2595.
17. Pellicciari, R.; Gioiello, A.; Costantino, G.; Sadeghpour, B. M.; Rizzo, G.; Meyer,
U.; Parks, D. J.; Entrena-Guadix, A.; Fiorucci, S. J. Med. Chem. 2006, 49, 4208.
18. Hagenbuch, B.; Meier, P. J. J. Clin. Invest. 1994, 93, 1326.
19. Hofmann, A. F.; Hagey, L. R. Cell. Mol. Life Sci. 2008, 65, 2461.
20. Roberts, M. S.; Magnusson, B. M.; Burczynski, F. J.; Weiss, M. Clin.
Pharmacokinet. 2002, 41, 751.
21. Literature references for advanced starting materials. (4a) Kiec´-Kononowicz,
K.; Karolak-Wojciechowska, J.; Michalak, B.; Pekala, E.; Schumacher, B.; Müller,
C. E. Eur. J. Med. Chem. 2004, 39, 205.; (4b) Larsen, S. D.; May, P. D.; Romines, K.;
Schnute, M. E.; Tanis, S. P.; Nieman, J. A.; Anderson, D. J.; Kim, E. J.; Turner, S. R.
PCT Int. Appl. 2003, WO 2003059878.; (1a) Kremoser, C.; Deuschle, U.; Abel, U.;
Schulz, A. PCT Int. Appl. 2008, WO 2008025540.; (1b) Abel, U.; Kremoser, C.;
PCT Int. Appl. 2009, WO 2009149795.; (2a, 2b) Ref. 13; (29) Brown, S. M.;
Bowden, M. C.; Parsons, T. J.; McNeilly, P.; de Fraine, P. J. Org. Process Res. Dev.
1997, 1, 370.
When tested in db/db mice, compounds 13 and 22 showed a
linear dose-dependent reduction in total plasma triglycerides and
total plasma cholesterol. Surprisingly the non-steroidal FXR ago-
nists 13 and 22 are metabolically transformed (taurine and glucu-
ronic acid conjugation) in a way that resembles that of natural bile
acids. The key metabolite of 22, 23 is a direct ligand of FXR, and a
substrate of NTCP as observed by gain-of-function studies. Never-
theless, compared to 6-ECDCA which was present at high levels
in liver 24 h after the last administration, neither 22 nor 23 were
present at relevant concentrations in plasma or liver at this time-
point. Thus, the risk of sustained non-mechanism related effects
with the isoxazoles might be lower compared to 6-ECDA, while
the duration of desirable pharmacodynamic effects is clearly ade-
quate to modify lipid homeostasis in these mice.
Overall, these data suggest that the newly identified com-
pounds are useful tools for assessing the effect of small-molecule