4708
R. S. Lamani et al. / Tetrahedron Letters 51 (2010) 4705–4709
R1
H
S
R1
NHPg2
H
N
THF, rt
N
NHPg2
SCN
Pg1HN
N
H
N
H
Pg1HN
NH2
R2
R2
O
O
1
5
R1
R2
H
N
p
-TsCl, Py
O
Pg1HN
NHPg2
THF, , 4 h
N
N
6
Scheme 2. Synthesis of orthogonally protected 1,3,4-oxadiazoles 6.
3. Sureshbabu, V. V.; Patil, B. S.; Venkataramanarao, R. J. Org. Chem. 2006, 71,
7697.
Table 3
List of orthogonally protected oxadiazoles 6
4. Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.; Jewell, D. A.;
Banville, S.; Ng, S.; Wang, S.; Rosenberg, S.; Marlowe, C. K.; Spellmeyer, D. C.;
Tan, R.; Frankel, A. D.; Santi, D. V.; Cohen, F. E.; Bartlett, P. A. Proc. Natl. Acad. Sci.
U.S.A. 1992, 89, 9367.
5. Cho, C. Y.; Moran, E. J.; Cherry, S. R.; Stephans, J. C.; Fodor, S. P.; Adams, C. L.;
Sundaram, A.; Jacobs, J. W.; Schultz, P. G. Science 1993, 261, 1303.
6. Moree, W. J.; Van der Marel, G. A.; Liskamp, R. J. J. Org. Chem. 1995, 60, 5157.
7. Videnov, G.; Kaiser, D.; Kempter, C.; Jung, G. Angew. Chem., Int. Ed. 1996, 35,
1503.
8. (a) Rostom, S. A. F.; Shalaby, M. A.; El-Demellawy, M. A. Eur. J. Med. Chem. 2003,
38, 959; (b) Holla, B. S.; Gonsalves, R.; Shenoy, S. Eur. J. Med. Chem. 2000, 35,
267.
9. Vardan, S.; Smulyan, H.; Mookherjee, S.; Eich, R. Clin. Pharm. Ther. 1983, 34, 290.
10. Schlecker, R.; Thieme, P. C. Tetrahedron 1988, 44, 3289.
11. Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K. J. Antibiot. 1971, 24, 443.
12. Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34,
2060.
Entry
Hydrazide 1
Isothiocyanate 5
Yield (%)
6a
6b
6c
Boc-Ala
Boc-Leu
Z-Phe
Z-Val
Z-Phe
Boc-Val
72
69
74
Z-protected 1,3,4-oxadiazole containing dipeptidomimetics 4a–j
were prepared. All the synthesized dipeptidyl 1,3,4-oxadiazole
derivatives were characterized by 1H NMR, 13C NMR, and mass
spectroscopic analyses. Also the course of the reaction was found
to be recemization free as was evident by both 1H NMR37 and HPLC
studies.38
The present approach was then extended to prepare the orthog-
13. Orlek, B. S.; Blaney, F. E.; Brown, F.; Clark, M. S. G.; Hadley, M. S.; Hatcher, J.;
Riley, G. J.; Rosenberg, H. E.; Wadsworth, H. J.; Wyman, P. J. Med. Chem. 1991,
34, 2726.
14. Ladduwahetty, T.; Baker, R.; Cascieri, M. A.; Chambers, M. S.; Haworth, K.;
Keown, L. E.; MacIntyre, D. E.; Metzger, J. M.; Owen, S.; Rycroft, W.; Sadowski,
S.; Seward, E. M.; Shepheard, S. L.; Swain, C. J.; Tattersall, F. D.; Watt, A. P.;
Williamson, D. W.; Hargreaves, R. J. J. Med. Chem. 1996, 39, 2907.
15. Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.; Luthman, K. J. Med.
Chem. 1999, 42, 4331.
16. (a) Ishikawa, H.; Elliott, G. I.; Velcicky, J.; Choi, Y.; Boger, D. L. J. Am. Chem. Soc.
2006, 128, 10596; (b) Elliott, G. I.; Fuchs, J. R.; Blagg, B. S. J.; Ishikawa, H.; Tao,
H.; Yuan, Z.-Q.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10589.
17. (a) Sureshbabu, V. V.; Hemantha, H. P.; Naik, S. A. Tetrahedron Lett. 2008, 49,
5133; (b) Sureshbabu, V. V.; Venkataramanarao, R.; Naik, S. A.;
Chennakrishnareddy, G. Tetrahedron Lett. 2007, 48, 7038; (c) Narendra, N.;
Vishwanatha, T. M.; Sudarshan, N. S.; Sureshbabu, V. V. Protein Pept. Lett. 2009,
16, 1029.
18. Jakopin, Z.; Dolenc, M. S. Curr. Org. Chem. 2008, 12, 850.
19. Rai, K. M. L.; Linganna, N. Farmaco 2000, 55, 389.
20. (a) Coppo, F. T.; Evans, K. A.; Graybill, T. L.; Burton, G. Tetrahedron Lett. 2004, 45,
3257; (b) Baxendale, I. R.; Ley, S. V.; Martinelli, M. Tetrahedron 2005, 61, 5323.
21. Dolman, S. J.; Gosselin, F.; O’Shea, P. D.; Davies, I. W. J. Org. Chem. 2006, 71,
9548.
22. Wang, X.; Li, Z.; Wei, B.; Yang, J. Synth. Commun. 2002, 32, 1097.
23. (a) Ahmed, M. M.; Aboulwafa, O. M.; Kader, O. Monatsh. Chem. 1989, 120, 571;
(b) Aboulwafa, O. M.; Omar, A.; Mohsen, M. E. Sulfur Lett. 1992, 14, 181.
24. Severinsen, R.; Kilbrun, J. P.; Lau, J. F. Tetrahedron 2005, 61, 5565.
25. Fulop, F.; Semega, E.; Dombi, G.; Bernath, G. J. Heterocycl. Chem. 1990, 27, 951.
26. Kucukguzel, S. G.; Oruc, E. E.; Rollas, S.; Sahin, F.; Ozbek, A. Eur. J. Med. Chem.
2002, 37, 197.
onally protected oxadiazoles
6 as well (Scheme 2). In this
approach, both the starting materials, that is, hydrazides and iso-
thiocyanates were prepared through the carboxy modification of
N-protected amino acid. Orthogonality of the N-protecting group
of participating reactants was maintained so as to enable selective
chain extension. For this, Boc/Z-protected amino alkyl isothiocya-
nates were prepared from the corresponding vicinal diamines,32
purified, and subsequently coupled with Z/Boc-amino acid hydra-
zides 1 in THF to obtain the key thiosemicarbazide intermediates
which upon desulfurative cyclization with p-TsCl/pyridine under
reflux conditions furnished the oxadiazoles 6 in good yields.39
The crude 1,3,4-oxadiazoles were purified through column chro-
matography and were fully characterized (Table 3). HPLC analysis
carried out on these derivatives proved that all the products are
free from racemization.37
In conclusion, a simple and convenient method for the synthesis
of 1,3,4-oxadiazole-linked dipeptidomimetics from corresponding
peptidyl thiosemicarbazides has been described. The protocol has
also been extended to prepare few N,N0-orthogonally protected
dipeptidomimetics. All the products were found to be chemically
homogeneous as analyzed by spectroscopic techniques. These
dipeptidomimetics can be utilized for the preparation of 1,3,4-oxa-
diazole containing oligopeptidomimetics through N- and C-termi-
nal chain extensions.
27. Pace, A.; Pierro, P. Org. Biomol. Chem. 2009, 7, 4337.
28. Borg, S.; Estenne-Bouhtou, G.; Luthman, K.; Csoeregh, I.; Hesselink, W.;
Hacksell, U. J. Org. Chem. 1995, 60, 3112.
Acknowledgments
29. Gavrilyuk, J. I.; Lough, A. J.; Batey, R. A. Tetrahedron Lett. 2008, 49, 4746.
30. Kudelko, A.; Zielinski, W. Tetrahedron 2009, 65, 1200.
31. (a) Gillessen, D.; Schnabel, E.; Meinhofer, J. Justus Liebigs Ann. Chem. 1963, 667,
164; (b) Strachan, R. G.; Paleveda, W. J.; Nutt, R. F.; Vitali, R. A.; Veber, D. F.;
Dickinson, M. J.; Grasky, V.; Deak, J. E.; Walton, E.; Jenkins, S. R.; Holly, F. W.;
Hirschmann, R. J. Am. Chem. Soc. 1969, 91, 503; (c) Guttmann, S.; Boissonnas, R.
A. Helv. Chim. Acta 1960, 43, 200.
32. Nowick et al., reported the synthesis of peptidyl isothiocyanates employing
modified Schotten–Baumann conditions under biphasic system by treating
peptide esters with thiophosgene. See: Nowick, J. S.; Holmes, D. L.; Noronha, G.;
Smith, E. M.; Nguyen, T. M.; Huang, S. J. Org. Chem. 1996, 61, 3929.
33. Sureshbabu, V. V.; Naik, S. A.; Hemantha, H. P.; Narendra, N.; Das, U.; Row, T. N.
G. J. Org. Chem. 2009, 74, 5260.
This research was supported by the Council of Scientific and
Industrial Research (Grant No. 01(2323)/09/EMR-II), Govt. of India
and R.S.L. thanks University Grants Commission, New Delhi, India
for the award of Dr. D. S. Kothari Postdoctoral Fellowship.
References and notes
1. Fletcher, M. D.; Campbell, M. Chem. Rev. 1998, 98, 763.
2. (a) Davis, S. S. In Perspectives in Medicinal Chemistry; Testa, B., Kyburz, E., Fuhrer,
W., Giger, R., Eds.; Verlag Helvetica Chimica Acta: Basel, 1993; pp 533–544; (b)
Hummel, G.; Reineke, U.; Reimer, U. Mol. BioSyst. 2006, 2, 499.
34. General procedure for the synthesis of isothiocyanato amino acid ester 2: To a
solution of amino acid ester salt (10 mmol) in CH2Cl2 was added CS2 (0.66 mL,
11 mmol) followed by TEA (5.58 mL, 40 mmol) at 0 °C, and stirred for 30 min at