5042
B. J. Truscott et al. / Tetrahedron Letters 51 (2010) 5041–5043
Scheme 1. Preparation of N0-substituted N-mesitylimidazolium salts under microwave-assisted conditions. Reagents and reaction conditions: (i) NH4Cl, H2O, 1,4-dioxane,
100 °C, then NaOH, 0 °C; (ii) NaH, THF, reflux; (iii) MW, 150 W, 85 °C, alkyl halide (6,7, 16–21, Table 1), toluene or EtOH.
following the literature methods, the N0-substituted N-mesitylimi-
21. Peng, H. M.; Webster, R. D.; Li, X. Organometallics 2008, 27, 4484–4493.
22. Maes, B. U. W.; Loones, K. T. J.; Hostyn, S.; Diels, G.; Rombouts, G. Tetrahedron
2004, 60, 11559–11564.
23. Peng, H. M.; Song, G.; Li, Y.; Li, X. Inorg. Chem. 2008, 47, 8031.
dazolium salts 8–15 using a general procedure, and all new com-
pounds were fully characterized.34
24. Alcalde, E.; Dinarès, I.; Rodríguez, S.; de Miguel, C. D. Eur. J. Org. Chem. 2005, 8,
1637–1643.
Acknowledgements
25. Occhipinti, G.; Bjorsvik, H.; Tornroos, K. W.; Furstner, A.; Jensen, V. R.
Organometallics 2007, 26, 4383–4385.
26. Sabbagh, I. T. Ph.D. Thesis, Rhodes University, 2005.
27. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27,
4945–4948.
28. Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J.
Tetrahedron Lett. 1986, 26, 279–282.
The authors thank Sasol Technologies for a bursary (to B.J.T.)
and Sasol Technologies and Rhodes University for the generous
financial support.
29. Loones, K. T. J.; Maes, B. U. W.; Rombouts, G.; Hostyn, S.; Diels, G. Tetrahedron
2005, 61, 10338–10348.
References and notes
30. Narayan, S.; Seelhammer, T.; Gawley, R. E. Tetrahedron Lett. 2004, 45, 757–759.
31. Hu, W.; Wang, J. C. N. Patent 1422847, 2003; Chem. Abstr. 2003, 143, 172688.
32. Novotny, J.; Dalecky, V.; Zavodna, I.; Kiss, F.; Mikuskova, A.; Jonas, P.; Macka,
M.; Marcikova, L.; Kozisek, R. CS Patent 277196, 1992; Chem. Abstr. 1992, 120,
322819.
1. Arduengo, A. J.; Gamper, S. F.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc.
1994, 116, 4391–4394.
2. Liddle, S. T.; Edworthy, I. S.; Arnold, P. L. Chem. Soc. Rev. 2007, 36, 1732–1744.
3. Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361–363.
4. Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309.
5. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
6. Lee, D.; Kim, J.; Jun, B.; Kang, H.; Park, J.; Lee, Y. Org. Lett. 2008, 10, 1609–1612.
7. Herrmann, W. A.; Kocher, C. Angew. Chem., Int. Ed. 1997, 36, 2162–2187.
8. Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999, 121,
2674–2678.
9. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956.
10. Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858–9859.
11. Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115, 9856–9857.
12. Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992,
114, 3974–3975.
13. Flahaut, A.; Roland, S.; Mangeney, P. J. Organomet. Chem. 2007, 692, 5754–5762.
14. Wolf, J.; Labande, A.; Natella, M.; Daran, J.; Poli, R. J. Mol. Catal. A: Chem. 2006,
259, 205–212.
15. Normand, A. T.; Yen, S. K.; Huynh, H. V.; Hor, T. S. A.; Cavell, K. J. Organometallics
2008, 27, 3153–3160.
16. Viciu, M. S.; Grasa, G. A.; Nolan, S. P. Organometallics 2001, 20, 3607–3612.
17. Boydston, A. J.; Xia, Y.; Kornfield, J. A.; Gorodetskaya, I. A.; Grubbs, R. H. J. Am.
Chem. Soc. 2008, 130, 12775–12782.
18. Fürstner, A.; Krause, H.; Ackermann, L.; Lehmann, C. W. Chem. Commun. 2001,
2240.
33. Tulloch, A. A. D.; Danopoulos, A. A.; Winston, S.; Kleinhenz, S.; Eastham, G.
Dalton Trans. 2000, 4499–4506.
34. General procedure for the alkylation of N-mesitylimidazole (4). A solution of N-
mesitylimidazole (4) and an equimolar equivalent of the alkyl halide in toluene
or EtOH (1 mL) was heated at 85 °C, 150 W with stirring in a CEM Discover
single-mode microwave apparatus, producing controlled irradiation at
2450 MHz, using a standard 10 mL silicon–septum sealed glass pressure vial.
The reactions were optimized using the temperature–time mode of operation
and the temperature was monitored by means of an IR sensor directed at the
outside wall of the reaction vial. The reaction times (Table 1) refer to hold
times at the indicated temperature and not total irradiation times. Upon
completion, the reaction mixture was cooled to below 50 °C via propelled air
flow, and the precipitate was washed with toluene and, in some cases, with
acetone or Et2O to give the desired N0-substituted N-mesitylimidazolium salts
8–15. Alkylations were typically repeated using 100–250 mg of the starting
material. The largest quantity of starting material used in a reaction was
500 mg and the reaction proceeded as normal.
1-[4,4-Bis(ethoxycarbonyl)butyl]-3-mesitylimidazol-2-ium chloride 8 (15 mg, 7%)
as a brown oil (found: M+ 387.2273. C22H31N2O4 requires M, 387.2284); mmax
/
cmꢁ1 1722 (C@O), and 1546 (C@N); dH (400 MHz; CDCl3) 1.25 (6H, t, J 7.1,
2 ꢂ CH2CH3), 1.94 (2H, m, CH2CH), 2.07 (6H, s, 2 ꢂ o-CH3), 2.08 (2H, m,
CH2CH2CH2), 2.33 (3H, s, p-CH3), 3.42 (1H, t, J 7.0, CH), 4.17 (4H, m, 2 ꢂ OCH2),
4.80 (2H, t, J 6.9, NCH2), 6.98 (2H, s, 2 ꢂ ArH), 7.14 and 7.71 (2H, 2 ꢂ s, 4- and 5-
H) and 10.64 (1H, s, NCHN); dC (100 MHz; CDCl3) 14.0 (q, 2 ꢂ CH2CH3), 17.5 (q,
19. Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.; Reibenspies, J. H.; Burgess, K. J. Am.
Chem. Soc. 2003, 125, 113–123.
20. Pruhs, S.; Lehmann, C. W.; Furstner, A. Organometallics 2004, 23, 280–287.