5216
T. Zhu et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5212–5216
Me
HN
O
Me
HN
O2
S
F
OH
H2C
O
O
N
O
N
O2
S
N
phosphodiesterase
+
F
N
O
OH
CONH2
N
O
O
HO
P
OH
Potent HCV polymerase in hibitor
O
OH
H2C
4
O
O
N
O
1, Potent HCV in
P
N
hibitor
phosphatase
N
HO
CONH2
HO
OH
Me
Potent HCV polymerase in hibitor
HN
O
O2
S
F
O
N
2. Potent HCV polymerase in hibitor
HO
Scheme 2. Enzymatic hydrolysis of 3b to release 4, 1 and 2 successively.
substrate for phosphodiesterase and phosphatase. Indeed, phos-
pholipase D was found to catalyze the hydrolysis of 3b into to 1
and 4, which was further slowly hydrolyzed to 2 under this condi-
tion. Another experiment showed that 4 was quickly converted to
2 catalyzed by alkaline phosphatase. In short, 3b gains cellular
activity by itself, from its hydrolyzed intermediates (4 and 1) and
final hydrolyzed products (2 and 1) during the course of 3b inside
the cell (Scheme 2).
It is known that HCV replicates with high frequency and with
very high error rate so that HCV readily develops resistance to
therapies, especially selective inhibitors with specific mechanism.
Mutants resistant to HCV-796 and other newer class of anti-virals
have already been discovered.5,7,16 It is this very reason that most
monotherapies provide transient effect at best and a combination
is needed for a sustained HCV eradication. A triple combination
of INF, Ribavirin and an orthogonally selective HCV inhibitor is
believed to be needed for a sustained HCV eradication.7,17 The
combination of HCV-796 with Ribavirin and INF-2a is a good
example. Another example is the observation of synergic effect
of VX-950, a selective protease inhibitor when used with Ribavi-
rin and INF. The therapy duration and dosage are the other two
main factors in achieving therapy efficacy and mitigating adverse
effects.
References and notes
1. Neukam, K.; Macías, J.; Mira, J. A.; Pineda, J. A. Expert Opin. Pharmacother. 2009,
10, 417.
2. Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.; Witkowski, J.; Robins, R.
K. Science 1972, 177, 705.
3. Torriani, F. J.; Rodriguez-Torres, M.; Rockstroh, J. K.; Rockstroh, J. K.; Lissen, E.;
Gonzalez-García, J.; Lazzarin, A.; Carosi, G.; Sasadeusz, J.; Katlama, C.;
Montaner, J.; Sette, H., Jr.; Passe, S.; de Pamphilis, J.; Duff, F.; Marion, S.;
Dieterich, D. T. N. Eng. J. Med. 2004, 351, 438.
4. Robert, G. G. J. Antimicrob. Agents Chemother. 2006, 57, 8.
5. Pawlotsky, J.-M. Hepatology 2000, 32, 889.
6. Almasio, P. L.; Ingrassia, D.; Vergara, B.; Filosto, S. Expert Rev. Anti-Infect. Ther.
2008, 6, 775.
7. Koev, G.; Kati, W. Expert Opin. Invest. Drugs 2008, 17, 303.
8. (a) Kneteman, N. M.; Howe, A. Y. M.; Gao, T.; Lewis, J.; Pevear, D.; Lund, G.;
Douglas, D.; Mercer, D. F.; Tyrrell, D. L. J.; Immermann, F.; Chaudhary, I.; Speth,
J.; Villano, S. A.; O’Connell, J.; Collett, M. Hepatology 2009, 49, 745; (b)
Unfortunately, HCV-796’s clinical trials are on hold due to the fact that this
treatment elevates liver enzymes.
9. Rustgi, V. K.; Lee, W. M.; Lawitz, E.; Gordon, S. C.; Afdhal, N.; Poordad, F.;
Bonkovsky, H. L.; Bengtsson, L.; Chandorkar, G.; Harding, M.; Lindsay McNair,
L.; Aalyson, M.; Alam, J.; Kauffman, R.; Gharakhanian, S.; McHutchison, J. G.
Hepatology 2009, 50, 1719.
10. Drabikowska, A. K.; Dudycz, L.; Shugar, D. J. Med. Chem. 1979, 22, 653. and
references cited therein.
11. Hu, L. Drug Delivery: Principles and Applications. In Wang, B., Siahaan, T.,
Soltero, R. A., Eds.; John Wiley and Sons, 2005; pp 125–187.
12. Opitz, H.-G.; Muller, C.; Braspenning, J. WO2008/052722.
13. Kini, G. D.; Henry, E. M.; Robins, R. K.; Larson, S. B.; Marr, J. J.; Berens, R. L.;
Bacchi, C. J.; Nathan, H. C.; Keithly, J. S. J. Med. Chem. 1990, 33, 44.
14. Experiments were conducted on different time with HCV-796 as the positive
control. Compound’s average activity was compared to HCV-796’s average
activity on the same experiment.
15. Stuyver, L. J.; McBrayer, T. R.; Whitaker, T.; Tharnish, P. M.; Ramesh, M.; Lostia,
S.; Cartee, L.; Shi, J.; Hobbs, A.; Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.
Antimicrob. Agents Chemother. 2004, 48, 651.
16. Howe, A. Y. M.; Cheng, H.; Johann, S.; Mullen, S.; Chunduru, S. K.; Young, D. C.;
Bard, J.; Chopra, R.; Krishnamurthy, G.; Mansour, T.; O’Connell, J. J. Antimicrob.
Agents Chemother. 2008, 52, 3327.
In this context, current approach can not only deliver two or three
agents in a single entity fashion, but can also provide additional ben-
efits. It could operate on different mechanisms at different times
during the course of action and with longer duration of overall inhi-
bition. This strategy might be applicable to other inhibitors and in
particular, but not limited to, other benzofuran classes of the inhib-
itors that occupy the same binding pocket of NS5B.
17. Maynard, M.; Pradat, P.; Bailly, F.; Rozier, F.; Nemoz, C.; Si Ahmed, S.; Adeleine,
P.; Trépo, C. J. Hepatol. 2006, 44, 484.
Supplementary data
Supplementary data associated with this article can be found, in