A. Bhattacharya et al. / Chemical Physics Letters 493 (2010) 151–157
157
cule and the molecular conformation which facilitate
ing interaction.
p. . .
p
stack-
data associated with this article can be found, in the online version,
References
4. Conclusions
[1] D.E. Griswold, J.L. Adams, Med. Res. Rev. 16 (1996) 181.
[2] G.F. Fabiola, V. Pattabhi, K. Nagrajan, Bioorg. Med. Chem. 6 (1998) 2337.
[3] A. Bennet, Rheumatology 38 (Suppl. 1) (1999) 1.
[4] C. Michaux, C. Charlier, F. Julémont, X. de Leval, J. -M. Dogné, B. Pirotte, F.
Durant, Eur. J. Med. Chem. 40 (2005) 1316.
[5] T. Inaba, K. Tanaka, R. Takeno, H. Nagaki, C. Yoshida, S. Takano, Chem. Pharm.
Bull. 48 (2000) 131.
[6] F. Julémont et al., J. Med. Chem. 47 (2004) 6749.
[7] R. García-Nieto, C. Pérez, F. Gago, J. Comput.-Aided Mol. Des. 14 (2000) 147.
[8] R.G. Kurumbail et al., Nature 384 (1996) 644.
[9] K.D.M. Harris, M. Tremayne, B.M. Kariuki, Angew. Chem. Int. Ed. 40 (2001)
1626.
[10] W.I.F. David, K. Shankland, L.B. McCusker, C. Baerlocher (Eds.), Structure
Determination from Powder Diffraction Data, OUP/IUCr, 2002.
[11] S. Pagola, P.W. Stephens, D.S. Bohle, A.D. Kosar, S.K. Madsen, Nature 404 (2000)
307.
Two nimesulide derivatives, N-(4-amino-2-phenoxyphenyl)
methanesulfonamide (2) and N-[4-(1,3-dioxo-1,3-dihydroisoin-
dol-2-yl)-2-phenoxyphenyl] methanesulfonamide (3), were syn-
thesized and their crystal structures have been solved using
laboratory X-ray powder diffraction data. The molecular geometry
and the electronic structure of 2 and 3 have been analyzed by the
DFT calculations. The observed molecular conformations of the
compounds as established by the X-ray analysis agree well with
that obtained from the quantum mechanical calculations. Intermo-
lecular N–H. . .O hydrogen bonds in 2 generate a two-dimensional
supramolecular assembly of R44(12) and R44(36) rings, whereas in 3 a
three-dimensional supramolecular framework is formed by a com-
[12] H. Nowell, J.P. Attfield, J.C. Cole, P.J. Cox, K. Shankland, S.J. Maginn, W.D.S.
Motherwell, New J. Chem. 26 (2002) 469.
[13] K.D.M. Harris, Mater. Manuf. Processes 24 (2009) 293.
[14] W.I.F. David, K. Shankland, Acta Cryst. A 64 (2008) 52.
[15] B. Chattopadhyay, S. Basu, P. Chakraborty, S.K. Choudhuri, A.K. Mukherjee, M.
Mukherjee, J. Mol. Struct. 932 (2009) 90.
[16] A. Altomare, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, R. Rizzi, E. Werner,
J. Appl. Cryst. 33 (2000) 1180.
[17] A. Altomare et al., J. Appl. Cryst. 37 (2004) 1025.
[18] M.M. Hall, V.G. Veeraraghavan, H. Rubin, P.G. Winchell, J. Appl. Cryst. 10
(1977) 66.
bination of N–H. . .O, C–H. . .O hydrogen bonds and
p. . .p stacking
interactions. The HOMO–LUMO energy separation suggests that
compound 3 is likely to be more reactive than compound 2. The
anti-inflammatory activity evaluated using the rat paw edema
model indicates that compound 3 can induce 34% edema inhibition
in rat paws, while the compound 2 does not exhibit any anti-
inflammatory activity. The present study is promising for resolving
the structure at an atomic resolution of pharmaceutical com-
pounds that can not be easily obtained as single crystals suitable
for conventional X-ray structure analysis.
[19] P.J.M. van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and
Applications, D. Riedel Publishing, Holland, 1987.
[20] V.F. Nicolin, R. Cerny, J. Appl. Cryst. 35 (2002) 734.
[21] J.J.P. Stewart, MOPAC Version 5.0, A General Purpose Molecular Orbital Package,
QCEP, p. 455.
Acknowledgements
[22] A.C. Larson, R.B.V. Dreele, General Structure Analysis System (GSAS), Los
Alamos National Laboratory Report, LA-UR 86-748G, 1994.
[23] B.H. Toby, J. Appl. Cryst. 34 (2001) 210.
[24] B. Delley, J. Chem. Phys. 92 (1990) 508.
[25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[26] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[27] A.C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[28] C.A. Winter, E.A. Risley, R.H. Silber, J. Pharmacol. Exp. Ther. 162 (1968) 196.
[29] L. Dupont, Acta Cryst. C 51 (1995) 507.
Financial support from the University Grants Commission, New
Delhi, and the Department of Science and Technology, Government
of India, New Delhi, through the DRS (SAP-1) and FIST programs for
purchasing the Bruker D8 Advance X-ray powder diffractometer, is
gratefully acknowledged. AB thanks the University Grants Com-
mission, India, for a research fellowship. We also thank Prof. Mon-
ika Mukherjee, IACS, Kolkata, for helping in DFT calculations.
[30] C. Michaux et al., Acta Cryst. C. (2002) 88.
[31] P. Smith-Verdier, S. Garcia-Blanco, F. Florencio, Acta Cryst. B 32 (1976) 2006.
[32] M. Szabo, D. Ban, C. Rat, A. Silvestru, J.E. Drake, M.B. Hursthouse, M.E. Light,
Inorg. Chem. Acta 357 (2004) 3595.
Appendix A. Supplementary data
[33] B.T. Gowda, S. Forob, H. Fuess, Acta Cryst. E 63 (2007) o2570.
[34] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem. Int. Ed. Engl. 34
(1995) 1555.
[35] K.H. Kim, Y.K. Han, J. Jung, Theor. Chem. Acc. 113 (2005) 233.
[36] J. Aihara, J. Phys. Chem. A 103 (1999) 7487.
Crystallographic data for the structures C13H14O3N2S (2) and
C21H16O5N2S (3) reported in this article have been deposited with
the Cambridge Crystallographic Data Centre as supplementary
publication numbers CCDC 761790 and 761791. Supplementary