V. Belluau et al. / Tetrahedron Letters 51 (2010) 4738–4741
4741
the precipitation of barium carbonate had ceased. Most of the acetone was
evaporated and the remaining solution was extracted with CH2Cl2 (3 Â 50 mL).
The combined organic layer was washed with saturated NH4Cl (1 Â 50 mL) and
brine (1 Â 50 mL), dried over MgSO4, and evaporated. The crude products were
purified by column chromatography (eluent: n-hexane/EtOAc = 1:1). In most
cases, the pure product precipitated during evaporation of acetone and was
isolated by vacuum filtration and dryied in vacuo instead. Selected physical
and spectral data for 3-(3,4-dimethoxybenzyl)-3-hydroxy-isoindolin-1-one 3n:
colorless solid, mp 170 °C. Rf (SiO2, n-hexane/EtOAc = 1:1): 0.13. 1H NMR
Acknowledgments
This research project was supported financially by the Science
Foundation Ireland (SFI, 07/RFP/CHEF817 and 06/RFP/CHO028),
the Environmental Protection Agency (EPA) and the Department
of Environment, Heritage and Local Government (DEHLG, 2008-
ET-MS-2-S2), and James Cook University (Startup Funding). The
authors would like to thank Assoc. Prof. Bruce Bowden (JCU), Dr.
Murray Davies (JCU), and Dr. Thomas Dietrich (mikroglas chem-
tech) for technical advice and support.
(300 MHz, acetone-d6):
d
(ppm) = 3.28 (d, 2J = 13.5 Hz, 1H, CH2), 3.36 (d,
2J = 13.5 Hz, 1H, CH2), 3.58 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 5.32 (s, 1H, OH),
6.64 (m, 3H, Harom), 7.43 (m, 2H, Harom), 7.60 (m, 2H, Harom), 7.81 (s, 1H, NH).
13C NMR (75 MHz, acetone-d6): d (ppm) = 45.3, 55.9, 56.0, 88.9, 112.1, 115.6,
123.4, 123.8, 123.9, 129.2, 129.8, 132.6, 133.2, 149.2, 149.6, 149.8, 168.5. IR
(KBr):
m = 3329, 2948, 2833, 1686, 1514, 1467, 1421, 1263, 1236, 1140, 1023,
767, 701 cmÀ1. HR-MS (ESI, negative mode): Calcd [MÀH]+: 298.1085 for
References and notes
C
17H17NO4 À H+. Found [MÀH]+: 298.1088. HR-MS (ESI, positive mode): Calcd
[M+Na]+: 322.1050 for C17H17NO4 + Na+. Found [M+Na]+: 322.1053.
16. (a) Coyle, E. E.; Oelgemöller, M. Photochem. Photobiol. Sci. 2008, 7, 1313–1322;
(b) Coyle, E. E.; Oelgemöller, M. Chem. Technol. 2008, 5, T95; (c) Matsushita, Y.;
Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata,
T. Pure Appl. Chem. 2007, 79, 1959–1968; (d) Oelgemöller, M.; Gallagher, S.;
Tan, S. B.; Chen, F.; Macka, M. In Proceedings of the 2009 AIChE Spring National
Meeting, Tampa, FL, USA, 26–30 April 2009; AIChE, 2009, ISBN: 978-0-8169-
1052-6 (CD-Rom), pp 1–3.
1. (a) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Org. Bioorg. Chem.
2007, 5, 1466–1471; (b) Kato, Y.; Takemoto, M.; Achiwa, K. Chem. Pharm. Bull.
1999, 44, 529–535; (c) Kato, Y.; Takemoto, M.; Achiwa, K. Chem. Pharm. Bull.
1993, 41, 2003–2006.
2. For aristolactams, see: (a) Choi, Y. L.; Kim, J. K.; Choi, S.-U.; Min, Y.-K.; Bae, M.-
A.; Kim, B. T.; Heo, J.-N. Bioorg. Med. Chem. Lett. 2009, 19, 3036–3040; (b)
Kumar, V.; Poonam; Prasad, A. K.; Parmar, V. S. Nat. Prod. Rep. 2003, 20, 565–
583; (c) Couture, A.; Deniau, E.; Grandclaudon, P.; Rybalko-Rosen, H.; Léonce,
S.; Pfeiffer, B.; Renard, P. Bioorg. Med. Chem. Lett. 2002, 12, 3557–3559.
3. (a) Ang, W. S.; Halton, B. Aust. J. Chem. 1971, 24, 851–856; (b) Sekiya, M.; Terao,
Y. J. Pharm. Soc. Jpn. 1968, 88, 1085–1089.
4. Hendi, M. S.; Natalie, K. J.; Hendi, S. B.; Campbell, J. A.; Greenwood, T. D.; Wolfe,
J. F. Tetrahedron Lett. 1989, 30, 275–278.
5. Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432–1437.
6. Couty, S. C.; Liégault, B.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2511–2514.
7. Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron Lett. 1997, 53, 10313–
10330.
8. Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Synthesis 2006, 1333–
1338.
17. The dwell-reactor is made out of Foturan™ glass (k ꢀ 300 nm) and has a total
path length of 1.15 m (20 turns) on a 118 mm  73 mm aperture. The reactor
consisted of a (bottom) serpentine reaction channel 0.5 Â 2 mm (D Â W), with
a second (top), heat-exchanging channel through which water is passed in
order to control the reactor temperature. The degassed reaction mixture
(10 mL)15 was pumped through the reaction channel via a syringe pump and
collected in a test tube.
18. General dehydration procedure: Compound 3 (1–2 mmol) was dissolved in
CH2Cl2 (30 mL). The reaction mixture was cooled in an ice-bath (0 °C) and 3–5
drops of concd H2SO4 were added. The reaction mixture turned yellow
instantly and precipitation occurred. After stirring overnight at room
temperature, H2O (ca. 30 mL) was added, and most of the CH2Cl2 was
evaporated. In most cases, the pure product precipitated completely during
evaporation and was isolated by vacuum filtration, washing with H2O (ca.
50 mL), and drying in vacuo. Alternatively, the remaining solution was
extracted with CH2Cl2 (3 Â 30 mL). The combined organic layer was washed
with brine (1 Â 50 mL), dried over MgSO4, and evaporated.
9. Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361–7364.
10. (a) Griesbeck, A. G.; Warzecha, K.-D.; Neudörfl, J. M.; Görner, H. Synlett 2004,
2347–2350; (b) Warzecha, K.-D.; Görner, H.; Griesbeck, A. G. J. Phys. Chem. A
2006, 110, 3356–3363.
11. (a) Gallagher, S.; Hatoum, F.; Zientek, N.; Oelgemöller, M. Tetrahedron Lett.
2010, 51, 3639–3641; (b) Hatoum, F.; Gallagher, S.; Oelgemöller, M. Tetrahedron
Lett. 2009, 50, 6593–6596; (c) Hatoum, F.; Gallagher, S.; Baragwanath, L.; Lex, J.;
Oelgemöller, M. Tetrahedron Lett. 2009, 50, 6335–6338; (d) Kim, A. R.; Lee, K.-S.;
Lee, C.-W.; Yoo, D. J.; Hatoum, F.; Oelgemöller, M. Tetrahedron Lett. 2005, 46,
3395–3398; (e) Oelgemöller, M.; Cygon, P.; Lex, J.; Griesbeck, A. G. Heterocycles
2003, 59, 669–684; (f) Griesbeck, A. G.; Gudipati, M. S.; Hirt, J.; Lex, J.;
Oelgemöller, M.; Schmickler, H.; Schouren, J. Org. Chem. 2000, 65, 7151–7157;
(g) Griesbeck, A. G.; Oelgemöller, M.; Lex, J. Synlett 2000, 1455–1457; (h)
Griesbeck, A. G.; Oelgemöller, M. Synlett 2000, 71–72; (i) Griesbeck, A. G.;
Oelgemöller, M. Synlett 1999, 492–494; (j) Peters, K.; Peters, E.-M.; Oelgemöller,
M.; Cho, J.-M.; Griesbeck, A. G. Z. Krist. NCS 2000, 215, 37–38.
12. For reviews on or incorporating PDC-reactions involving phthalimides, see: (a)
McDermott, G.; Yoo, D. J.; Oelgemöller, M. Heterocycles 2005, 65, 2221–2257;
(b) Oelgemöller, M.; Griesbeck, A. G. In CRC Handbook of Organic Photochemistry
and Photobiology; Horspool, W. M., Lenci, F., Eds., 2nd ed.; CRC Press: Boca
Raton, 2004; pp 1–19. Chapter 84; (c) Oelgemöller, M.; Griesbeck, A. G. J.
Photochem. Photobiol. C: Photochem. Rev. 2002, 3, 109–127; (d) Griesbeck, A. G.;
Kramer, W.; Oelgemöller, M. Synlett 1999, 1169–1178; (e) Kramer, W.;
Griesbeck, A. G.; Nerowski, F.; Oelgemöller, M. J. Inf. Rec. 1998, 24, 81–85.
13. (a) Griesbeck, A. G.; Maptue, N.; Bondock, S.; Oelgemöller, M. Photochem.
Photobiol. Sci. 2003, 2, 450–451; (b) Griesbeck, A. G.; Kramer, W.; Oelgemöller,
M. Green Chem. 1999, 1, 205–207.
Selected physical and spectral data for (E)-3-(4-methoxybenzylidene)isoindolin-
1-one E-6c: yellow solid, mp 196 °C. Rf (SiO2, n-hexane/EtOAc = 1:1): 0.55. 1H
NMR (300 MHz, CDCl3): d (ppm) = 3.86 (s, 3H, OCH3), 6.52 (s, 1H, CHolef), 6.76
(m, 2H, Harom), 7.38 (m, 2H, Harom), 7.50 (ddd, 3J = 7.6, 3J = 7.6, 4J = 1.0 Hz, 1H,
H
arom), 7.63 (ddd, 3J = 7.6, 3J = 7.6, 4J = 1.2 Hz, 1H, Harom), 7.77 (dd, 3J = 7.6,
4J = 1.0 Hz, 1H, Harom), 7.88 (dd, 3J = 7.6, 4J = 1.2 Hz, 1H, CHarom), 7.99 (s, 1H,
NH). 13C NMR (75 MHz, CDCl3): d (ppm) = 31.1, 106.0, 115.0, 119.8, 123.7,
127.7, 129.1, 129.9, 131.9, 132.3, 138.5, 159.4, 165.2, 169.0. IR (KBr):
m = 3416,
1702, 1602, 1513, 1300, 1252, 1179, 1031, 849, 820 cmÀ1. HR-MS (ESI, negative
mode): Calcd [MÀH]+: 250.0874 for C16H13NO2ÀH+. Found [MÀH]+: 250.0866.
HR-MS (ESI, positive mode): Calcd [M+H]+: 252.1019 for C16H13NO2 + H+.
Found [M+H]+: 252.1022. Calcd [M+Na]+: 274.0838 for C16H13NO2 + Na+. Found
[M+Na]+: 274.0830.
19. Griesbeck, A. G.; Oelgemöller, M.; Lex, J.; Haeuseler, A.; Schmittel, M. Eur. J. Org.
Chem. 2001, 1831–1843.
20. (a) Oelgemöller, M.; Brem, B.; Frank, R.; Schneider, S.; Lenoir, D.; Hertkorn, N.;
Origane, Y.; Inoue, Y.; Lemmen, P.; Lex, J. J. Chem. Soc., Perkin Trans. 2 2002,
1760–1771; (b) Laarhoven, W. H. Org. Photochem. 1989, 10, 163–308; (c)
Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1–456; (d) Doyle, T. D.;
Benson, W. R.; Filipescu, N. J. Am. Chem. Soc. 1976, 98, 3262–3267.
21. For E-3-(4-methoxybenzylidene)-2-methylisoindolin-1-one (CCDC 244765),10a
a distance of 3.37 Å was determined between the crucial ‘inner’ carbon atoms.
The 4-methoxyphenyl-ring is also rotated ‘out of plane’ of the methylene-
isoindolin-1-one moiety.
22. (a) Görner, H.; Oelgemöller, M.; Griesbeck, A. G. J. Phys. Chem. A 2002, 106,
1458–1464; (b) Görner, H.; Griesbeck, A. G.; Heinrich, T.; Kramer, W.;
Oelgemöller, M. Chem. Eur. J. 2001, 7, 1530–1538.
23. The mechanism mirrors that of related cyclization reactions, see: (a)
Oelgemöller, M.; Griesbeck, A. G.; Kramer, W.; Nerowski, F. J. Inf. Rec. 1998,
24, 87–94; (b) Griesbeck, A. G.; Henz, A.; Kramer, W.; Lex, J.; Nerowski, F.;
Oelgemöller, M.; Peters, K.; Peters, E.-M. Helv. Chim. Acta 1997, 80, 912–933.
24. Sánchez-Sánchez, C.; Pérez-Inestrosa, E.; García-Segura, R.; Suau, R.
Tetrahedron 2002, 58, 7267–7274.
14. Irradiations in pH 7/acetone mixtures were also successfully used for PDC-
cyclizations involving phthaloyl peptides, see: (a) Griesbeck, A. G.; Heinrich, T.;
Oelgemöller, M.; Molis, A.; Heidtmann, A. Helv. Chim. Acta 2002, 85, 4561–
4578; (b) Griesbeck, A. G.; Heinrich, T.; Oelgemöller, M.; Molis, A.; Lex, J. J. Am.
Chem. Soc. 2002, 124, 10972–10973.
15. General irradiation procedure: Phthalimide (1.5 mmol) was dissolved in acetone
(50 mL). A solution of the potassium phenylacetate (4.5 mmol) in pH 7 buffer
(FixanalÒ
,
50 mL) was added, and the mixture was irradiated (Rayonet
Photochemical Reactor RPR-200; k = 300 20 nm) at 15–20 °C in Pyrex
a
Schlenk tube (k ꢀ 300 nm) while purging with a slow stream of nitrogen.
The progress of the reaction was monitored by TLC analysis or by passing the
departing gas stream through a saturated barium hydroxide solution until