M. M. Endeshaw et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5179–5183
5183
N4-dialkyl groups with 4-carbon
Significant increases in the length
and bulk of the N4-dialkyl chains
decrease activity and specificity
branched chains maintain activity
Replacement of the nitro
groups with nitrile moieties
N
decreases activity
O2N
NO2
An amino substitution
increases activity
O S O
NH2
Replacement of the sulfonamide moiety
with a trifluoromethyl or isopropyl group
decreases activity slightly
Substitution at N1
decreases activity
Figure 2. Activity map for dinitroaniline analogs against Toxoplasma microtubules.
plastid parasites, where exchanging nitrile groups for the nitro
Supplementary data
moieties present in the potent antikinetoplastid compound 6m
results in only a 1.5- to 2-fold loss of potency.32
Supplementary data associated with this article can be found, in
Trifluralin (14a) is 2.6-fold less potent than 6i, indicating that
the sulfonamide group conveys greater potency against Toxo-
plasma than the trifluoromethyl group. A 12-fold decrease in po-
tency compared to 14a is observed for 14b, a compound where
the nitro and trifluoromethyl groups of 14a are interchanged. The
addition of the meta-amino group (compounds 18a–c), however,
causes a dramatic increase in activity compared to 14a. Ma et al.
recently reported that the meta-amino group present in 18a partic-
References and notes
1. Montoya, J.; Liesenfeld, O. Lancet 2004, 363, 1965.
2. Kongsaengdao, S.; Samintarapanya, K.; Oranratnachai, K.; Prapakarn, W.;
Apichartpiyakul, C. J. Int. Assoc. Physicians AIDS Care 2008, 7, 11.
3. Tsuda, S.; Kosaka, Y.; Matsusaka, N.; Sasaki, Y. Mutat. Res. 1998, 415, 69.
4. Misawa, J.; Kanda, S.; Kokue, E.; Hayama, T.; Teramoto, S.; Aoyama, H.; Kaneda,
M.; Iwasaki, T. Toxicol. Lett. 1982, 10, 51.
5. Picot, S.; Olliaro, P.; Monbrison, F.; Bienvenu, A.; Price, R.; Ringwald, P. Malar. J.
2009, 8, 89.
6. Meneceur, P.; Bouldouyre, M.; Aubert, D.; Villena, I.; Menotti, J.; Sauvage, V.;
Garin, J.; Derouin, F. Antimicrob. Agents Chemother. 2008, 52, 1269.
7. Daudon, M.; Jungers, P. Drugs 2004, 64, 245.
8. Dibbern, D.; Montanaro, A. Ann. Allergy Asthma Immunol. 2008, 100, 91.
9. Dial, S.; Kezouh, A.; Dascal, A.; Barkun, A.; Suissa, S. CMAJ 2008, 179, 767.
10. Megged, O.; Shalit, I.; Yaniv, I.; Stein, J.; Fisher, S.; Levy, I. Pediatr. Transplant.
2008, 12, 902.
11. Montoya, J.; Remington, J. Clin. Infect. Dis. 2008, 47, 554.
12. Morris, P.; Fornier, M. Expert Rev. Anticancer Ther. 2009, 9, 175.
13. Kanthou, C.; Tozer, G. Int. J. Exp. Pathol. 2009, 90, 284.
14. Martin, R. Vet. J. 1997, 154, 11.
15. Stokkermans, T.; Schwartzman, J.; Keenan, K.; Morrissette, N.; Tilney, L.; Roos,
D. Exp. Parasitol. 1996, 84, 355.
16. Morrissette, N.; Mitra, A.; Sept, D.; Sibley, L. Mol. Biol. Cell 2004, 15, 1960.
17. Ma, C.; Tran, J.; Gu, F.; Ochoa, R.; Li, C.; Sept, D.; Werbovetz, K.; Morrissette, N.
Antimicrob. Agents Chemother. 2010, 54, 1453.
ipates in two critical hydrogen bonds with the
a-tubulin target,
significantly increasing the activity of this compound compared
to both 14a and 6i.17 Our present study confirms this result for
18a and also shows that the dipropylamino group found in 18b im-
parts twofold greater potency against Toxoplasma compared to the
N,N-diethyl substitution present in 18a and 14-fold greater po-
tency against this parasite compared to the N,N-di-n-butyl substi-
tution occurring in 18c. The selective antimitotic action of 18b is
illustrated in Figure 1A and B. Figure 1A1 shows well-defined
microtubules present in both host cells and in Toxoplasma in the
absence of compound treatment. In the presence of 0.5 lM 18b,
host cell microtubules remain intact, while the diffuse staining of
parasite tubulin reveals microtubule disruption in the parasites
(Fig. 1B1). Figure 1B also indicates that parasites exposed to
0.5
l
M 18b are unable to replicate.
18. Morrissette, N.; Sibley, L. J. Cell Sci. 2002, 115, 1017.
19. Shaw, M.; Compton, H.; Roos, D.; Tilney, L. J. Cell Sci. 2000, 113, 1241.
20. Chan, M.; Fong, D. Science 1990, 249, 924.
The results shown here, together with the data presented in Ma
et al.17 concerning the evaluation of commercial dinitroanilines
against T. gondii, permits us to develop an antimitotic structure–
activity relationship for dinitroanilines versus Toxoplasma. Isopro-
palin, a compound identical in structure to 6i and 14a except that
it contains an isopropyl group para to the alkylamino position,
reinforces the notion that sulfonamide-containing compounds
are slightly superior to congeners with other substitutions at this
position. As with compounds 6h and 6j, inclusion of a branched
chain four carbon alkyl group in ethalfluralin leads to better activ-
ity than with benfluralin, which possesses an n-butyl group at the
anilino nitrogen. The meta-amino derivatives 18a and 18b are
3.6- to 6.9-fold more potent than 6i against Toxoplasma in vitro,
and studies with 18a–c suggest that the optimal chain length of
the substitution on the aniline nitrogen is three carbons. These
structure–activity data are summarized in Figure 2. Future efforts
to optimize the anti-Toxoplasma potency and drug like properties
of the dinitroanilines will focus on meta-amino containing deriva-
tives 18a and 18b as lead compounds.
21. Arrowood, M.; Mead, J.; Xie, L.; You, X. FEMS Microbiol. Lett. 1996, 136,
245.
22. Benbow, J.; Bernberg, E.; Korda, A.; Mead, J. Antimicrob. Agents Chemother. 1998,
42, 339.
23. Werbovetz, K.; Sackett, D.; Delfin, D.; Bhattacharya, G.; Salem, M.; Obrzut, T.;
Rattendi, D.; Bacchi, C. Mol. Pharmacol. 2003, 64, 1325.
24. Mitra, A.; Sept, D. J. Med. Chem. 2006, 49, 5226.
25. Chan, M.; Triemer, R. E.; Fong, D. Differentiation 1991, 46, 15.
26. Chan, M.; Tzeng, Y.; Emge, T. J.; Ho, C.-T.; Fong, D. Antimicrob. Agents Chemother.
1993, 37, 1909.
27. Hugdahl, J. D.; Morejohn, L. C. Plant Physiol. 1993, 102, 725.
28. Morejohn, L.; Bureau, T.; Mole-Bajer, J.; Bajer, A.; Fosket, D. Planta 1987, 172,
252.
29. Bhattacharya, G.; Salem, M.; Werbovetz, K. Bioorg. Med. Chem. Lett. 2002, 12,
2395.
30. Bhattacharya, G.; Herman, J.; Delfin, D.; Salem, M.; Barszcz, T.; Mollet, M.;
Riccio, G.; Brun, R.; Werbovetz, K. J. Med. Chem. 2004, 47, 1823.
31. George, T.; Johnsamuel, J.; Delfín, D.; Yakovich, A.; Mukherjee, M.; Phelps, M.;
Dalton, J.; Sackett, D.; Kaiser, M.; Brun, R.; Werbovetz, K. Bioorg. Med. Chem.
2006, 14, 5699.
32. George, T.; Endeshaw, M.; Morgan, R.; Mahasenan, K.; Delfín, D.; Mukherjee,
M.; Yakovich, A.; Fotie, J.; Li, C.; Werbovetz, K. Bioorg. Med. Chem. 2007, 15,
6071.
33. Beletskaya, I.; Cheprakov, A. Coord. Chem. Rev. 2004, 248, 2337.
34. Maffioli, S.; Marzorati, E.; Marazzi, A. Org. Lett. 2005, 7, 5237.
35. Soper, Q. U.S. Patent 3,442,639, 1969.
Acknowledgment
36. Hunter, D.; Woods, W.; Stone, J.; LeFevre, C. U.S. Patent 3,903,078, 1975.
37. Rasheed, K.; Warkentin, J. J. Org. Chem. 1975, 42, 1265.
This work was funded by NIH Grants AI061021 (to K.A.W.) and
AI067981 (to N.S.M.).