Page 3 of 4
Journal Name
ChemComm
DOI: 10.1039/C5CC04085J
regioselectivities, respectively (3s and 3t). When allylbenzene was
‡
Electronic Supplementary Information (ESI) available: [details of any
used as the pronucleophile, the desired products were obtained in supplementary information available should be included here]. See DOI:
99% yield and with a ratio of 3:1 linear to branched product.12
To study the efficiency of the catalytic system, the reaction was
carried out with tert-butyl cinnamyl 1a (0.4 mmol), (E)-1,3-
diphenylpropene 2a (0.6 mmol) and NaHMDS (0.6 mmol) in THF
(3 mL), in the presence of 0.05 mol% [Ir(cod)Cl]2 and 0.11 mol%
dppf (S/Ir = 1000; S/Ir = substrate/iridium) at room temperature for
12 h under a nitrogen atmosphere.12 The desired product was
obtained in 90% yield and with >99/1 (linear to branched)
regioselectivity. When the S/Ir ratio was increased to 2000, the
product was obtained in 79% yield after 24 h with no loss of
regioselectivity.
To probe the mechanism of the reaction, we examined whether
the anions generated in the reactions behaved as soft or hard
nucleophiles.13 (E)-1,3-Di(β-naphthyl)propene 2t was reacted with
tert-butyl cis-(5-phenyl-2-cyclohexenyl)carbonate 5, affording only
trans-isomers of 6 with 35% isolated yield (Scheme 1).14 Early
studies examining the stereochemical course of Ir-catalyzed allylic
substitutions showed that the configuration of the products was
predominantly net retention, thus showing an outer sphere
nucleophilic attack with soft nuclophiles.15 Our results suggest that
the reactions involve an inner sphere coordination of the hard 1,3-
diarylallyl nucleophile with the iridium center, followed by reductive
elimination to deliver the desired product, i.e., the reactions proceed
via a cross-coupling pathway rather than an allylic substitution.
10.1039/b000000x/
1
(a) B. M. Trost and E. Keinan, Tetrahedron Lett., 1980, 21,
2595; (b) F. R. van Heerden, J. J. Huyser, D. B. G. Williams and
C. W. Holzapfel, Tetrahedron Lett., 1998, 39, 5281; (c) S.
Porcel, V. López-Carrillo, C. García-Yebra and A. M.
Echavarren, Angew. Chem. Int. Ed., 2008, 47, 1883.
2
3
(a) A. Yanagisawa, N. Nomura and H. Yamamoto, Tetrahedron,
1994, 50, 6017; (b) V. Hornillos, M. Pérez, M. Fañanás-Mastral
and B. L. Feringa, J. Am. Chem. Soc., 2013, 135, 2140.
(a) E. F. Flegeau, U. Schneider and S. Kobayashi, Chem. Eur. J.,
2009, 15, 12247; (b) P. Zhang, L. A. Brozek and J. P. Morken, J.
Am. Chem. Soc., 2010, 132, 10686; (c) A. Jiménez-Aquino, E. F.
Flegeau, U. Schneider and S. Kobayashi, Chem. Commun., 2011,
47, 9456; (d) P. Zhang, H. Le, R. E. Kyne and J. P. Morken, J.
Am. Chem. Soc., 2011, 133, 9716; (e) L. A. Brozek, M. J.
Ardolino and J. P. Morken, J. Am. Chem. Soc., 2011, 133,
16778; (f) M. J. Ardolino and J. P. Morken, J. Am. Chem. Soc.,
2014, 136, 7092.
4
(a) M. Méndez, J. M. Cuerva, E. Gómez-Bengoa, D. J. Cárdenas
and A. M. Echavarren, Chem. Eur. J., 2002, 8, 3620; (b) J. Y.
Hamilton, N. Hauser, D. Sarlah and E. M. Carreira, Angew.
Chem. Int. Ed., 2014, 53, 10759.
5
6
Y. Sumida, S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima,
Org. Lett., 2008, 10, 1629.
Selected papers of Ir-catalyzed enantioselective allylic
substitutions: (a) J. P. Janssen and G. Helmchen, Tetrahedron
Lett., 1997, 38, 8025; (b) T. Ohmura and J. F. Hartwig, J. Am.
Chem. Soc., 2002, 124, 15164; (c) C. A. Kiener, C. Shu, C.
Incarvito and J. F. Hartwig, J. Am. Chem. Soc., 2003, 125,
14272; (d) O. V. Singh and H. Han, J. Am. Chem. Soc., 2007,
129, 774; (e) S. Spiess, C. Welter, G. Franck, J.-P. Taquet and G.
Helmchen, Angew. Chem., Int. Ed., 2008, 47, 7652; (f) S. T.
Madrahimov, D. Markovic and J. F. Hartwig, J. Am. Chem. Soc.,
2009, 131, 7228; (g) M. Gärtner, S. Mader, K. Seehafer and G.
Helmchen, J. Am. Chem. Soc., 2011, 133, 2072; (h) K.-Y. Ye, H.
He, W.-B. Liu, L.-X. Dai, G. Helmchen and S.-L. You, J. Am.
Chem. Soc., 2011, 133, 19006; (i) W.-B. Liu, C. Zheng, C.-X.
Zhuo, L.-X. Dai and S.-L. You, J. Am. Chem. Soc., 2012, 134,
4812; (j) W.-B. Liu, C. M. Reeves and B. M. Stoltz, J. Am.
Chem. Soc., 2013, 135, 17298; (k) S. Krautwald, M. A.
Schafroth, D. Sarlah and E. M. Carreira, J. Am. Chem. Soc.,
2014, 136, 3020.
For reviews, see: (a) W. Zhang and D. Liu, Chiral Ferrocenes in
Asymmetric Catalysis: Synthesis and Applications; L.-X. Dai and
X.-L. Hou, Eds.; Wiley-VCH: Weinheim, 2010; Chapter 7; (b) N.
A. Butt, D. Liu and Wanbin Zhang, Synlett, 2014, 25, 615;
Selected papers: (c) X. Zhao, D. Liu, H. Guo, Y. Liu and W.
Zhang, J. Am. Chem. Soc., 2011, 133, 19354; (d) M. Quan, N.
Butt, J. Shen, K. Shen, D. Liu and W. Zhang, Org. Biomol.
Chem., 2013, 11, 7412; (e) X. Huo, M. Quan, G. Yang, X. Zhao,
D. Liu, Y. Liu and W. Zhang, Org. Lett., 2014, 16, 1570; (f) X.
Huo, G. Yang, D. Liu, Y. Liu, I. D. Gridnev and W. Zhang,
Angew. Chem., Int. Ed., 2014, 53, 6776.
Scheme 1 Allyl-allyl cross-coupling with inversion of
configuration
In summary, we have developed an efficient Ir-catalyzed allyl-
allyl cross-coupling of allylic carbonates with very weakly acidic
(E)-1,3-diarylpropenes that can be used directly as allyl
pronucleophiles. This transformation proceeded smoothly under
mild conditions to give linear allylated products, 1,5-dienes, with
excellent yields and regioselectivities and with high turnover
numbers (up to 2000 S/Ir).
Notes and references
a
b
School of Chemistry and Chemical Engineering and
School of
Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road,
Shanghai 200240, P. R. China. Fax: 21 5474 3265; Tel: 21 5474 3265; E-
mail: wanbin@sjtu.edu.cn.
7
†
We thank Prof. Tsuneo Imamoto and Dr. Masashi Sugiya of Nippon
Chemical Industrial Co. Ltd for helpful discussions. We also thank one of the
referees for his/her very useful suggestion about the mechanism. This work
was partially supported by the National Natural Science Foundation of China
(No. 21172143, 21232004, 21172145 and 21372152), Program of Shanghai
Subject Chief Scientists (No. 14XD1402300) and Nippon Chemical
Industrial Co. Ltd.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3