ORGANIC
LETTERS
2010
Vol. 12, No. 21
5056-5059
Influence of ꢀ-Substituents in Aldol
Reactions of Boron Enolates of
ꢀ-Alkoxy Methylketones
Luiz C. Dias,* Em´ılio C. de Lucca, Jr., Marco A. B. Ferreira, Danilo C. Garcia, and
Cla´udio F. Tormena
Instituto de Qu´ımica, UniVersidade Estadual de Campinas, UNICAMP, C.P. 6154,
13084-971, Campinas, SP, Brazil
Received September 24, 2010
ABSTRACT
Moderate to good levels of substrate-based 1,5-syn-stereocontrol could be achieved in the boron-mediated aldol reactions of ꢀ-tert-butyl
methylketones with achiral aldehydes, independent of the nature of the ꢀ-alkoxy protecting group (P ) PMB or TBS). The analysis of the
relative energies of the transition structures by theoretical calculations using the density functional B3LYP shows relative energies favoring
the corresponding OUT-1,5-SYN transition structures, explaining the observed 1,5-syn stereoinduction.
The first evidence for 1,5-anti asymmetric induction in aldol
reactions of boron enolates generated from ꢀ-alkoxy meth-
ylketones was described in 1989 by Masamune and co-
workers in their approach to the synthesis of the AB fragment
[C1-C16] of bryostatin 1.1
Since then, numerous approaches from the research groups
of Paterson,2 Evans,3 Denmark,4 Dias,5 and others6 have
shown that the sense of induction in aldol reactions of boron
enolates of ꢀ-alkoxy methylketones with aldehydes favors
the formation of the 1,5-anti diastereoisomer. However, we
demonstrated that it is possible to obtain good levels of 1,5-
syn induction from ꢀ-trifluoromethyl and ꢀ-trichloromethyl-
ꢀ-alkoxy methylketones independent of the nature of the
ꢀ-alkoxy protecting group (Scheme 1).5c,d
(4) (a) Denmark, S. E.; Fujimori, S.; Pham, S. M. J. Org. Chem. 2005,
70, 10823. (b) Denmark, S. E.; Fujimori, S. Synlett 2001, 1024. (c) Denmark,
S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971.
(1) Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.;
Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.; Tamura, T.
J. Org. Chem. 1989, 54, 2817.
(5) (a) Dias, L. C.; Sousa, M. A.; Zukerman-Schpector, J.; Bau, R. Z.
Org. Lett. 2002, 4, 4325. (b) Dias, L. C.; Aguilar, A. M. Org. Lett. 2006,
8, 4629. (c) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M.
Org. Lett. 2007, 9, 4869. (d) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.;
Aguilar, A. M. J. Org. Chem. 2008, 73, 6299. (e) Dias, L. C.; Pinheiro,
S. M.; Oliveira, V. M.; Ferreira, M. A. B.; Tormena, C. F.; Aguilar, A. M.;
Zukerman-Schpector, J.; Tiekink, E. R. Tetrahedron 2009, 65, 8714. (f)
Dias, L. C.; Aguilar, A. M. Chem. Soc. ReV. 2008, 37, 451. (g) Dias, L. C.;
Aguilar, A. M. Quim. NoVa 2007, 30, 2007.
(2) (a) Paterson, I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett.
1996, 37, 8581. (b) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron
Lett. 1996, 37, 8585. (c) Paterson, I.; Collet, L. A. Tetrahedron Lett. 2001,
42, 1187. (d) Paterson, I.; Di Francesco, M. E.; Kuhn, T. Org. Lett. 2003,
5, 599.
(3) (a) Evans, D. A.; Gage, J. R. Tetrahedron Lett. 1990, 31, 6129. (b)
Evans, D. A.; Coleman, P. J.; Coˆte´, B. J. Org. Chem. 1997, 62, 788. (c)
Evans, D. A.; Coˆte´, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc.
2003, 125, 10893. (d) Evans, D. A.; Connell, B. T. J. Am. Chem. Soc. 2003,
125, 10899. (e) Evans, D. A.; Nagorny, P.; McRae, K. J.; Sonntag, L.-S.;
Reynolds, D. J.; Vounatsos, F. Angew. Chem., Int. Ed. 2007, 46, 545. (f)
Evans, D. A.; Welch, D. E.; Speed, A. W. H.; Moniz, G. A.; Reichelt, A.;
Ho, S. J. Am. Chem. Soc. 2009, 131, 3840.
(6) (a) Arefolov, A.; Panek, J. S. Org. Lett. 2002, 4, 2397. (b) Park,
P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc.
2006, 128, 2796. (c) Li, P.; Li, J.; Arikan, F.; Ahlbrecht, W.; Dieckmann,
M.; Menche, D. J. Am. Chem. Soc. 2009, 131, 11678. (d) Li, P.; Li, J.;
Arikan, F.; Ahlbrecht, W.; Dieckmann, M.; Menche, D. J. Org. Chem. 2010,
75, 2429.
10.1021/ol102303p 2010 American Chemical Society
Published on Web 10/08/2010