Organic Letters
Letter
remained untouched under these conditions. Only the highly
functionalized N-propargylic amide (entry 7) was recovered in
relatively low yield, albeit without affecting the efficiency of diene
formation. Nonetheless, given all the possibilities for partic-
ipation by this additive (e.g., oxidative addition, nitro reduction,
directed ortho-C−H activation, Sonogashira-type insertion,
acetylenic π-coordination, etc.), an isolated additive recovery
yield of 69% was still achieved. Most notable, however, is the
exceedingly high reactivity of π-allenyl intermediates, which was
confirmed via entry 10, where the desired transformation of
allenic benzoate 20 took place with complete selectivity over the
analogous allylic benzoate. From analysis of the results described
above, general reactivity patterns can be deduced. Thus, the
order of reactivity associated with standard reagents used in
micellar cross-coupling reactions can be summarized, as shown
in Figure 1.
ACKNOWLEDGMENTS
We warmly acknowledge Novartis and the NSF (GOALI
SusChEM 1566212) for financial support.
■
REFERENCES
■
(1) Selected examples of 1,3-butadiene utility: (a) Frohn, M.;
Dalkiewicz, M.; Tu, Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63,
2948. (b) Burke, C. P.; Shi, Y. Angew. Chem., Int. Ed. 2006, 45, 4475.
(c) den Hartog, T. D.; Harutyunyan, S. R.; Font, D.; Minnaard, A. J.;
Feringa, B. L. Angew. Chem., Int. Ed. 2008, 47, 398. (d) Cho, H. Y.;
Morken, J. P. J. Am. Chem. Soc. 2008, 130, 16140. (e) Ferris, G. E.;
Hong, K.; Roundtree, I. A.; Morken, J. P. J. Am. Chem. Soc. 2013, 135,
2501.
(2) Selected examples of 1,3-butadiene preparation: (a) Brummond,
K. M.; You, L. Tetrahedron 2005, 61, 6180. (b) Michelet, V.; Toullec, P.
̂
Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (c) Semba, K.;
Fujihara, T.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2013, 52, 12400.
(d) Tonogaki, K.; Mori, M. Tetrahedron Lett. 2002, 43, 2235. (e) Wang,
Y.; West, F. G. Synthesis 2002, 99. (f) Takagi, J.; Takahashi, K.;
Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 8001. (g) Green,
N. J.; Willis, A. C.; Sherburn, M. S. Angew. Chem., Int. Ed. 2016, 55,
9244.
(3) (a) Nishikata, T.; Lipshutz, B. H. J. Am. Chem. Soc. 2009, 131,
12103. (b) Nishikata, T.; Lipshutz, B. H. Chem. Commun. 2009, 6472.
(c) Moser, R.; Nishikata, T.; Lipshutz, B. H. Org. Lett. 2010, 12, 28.
(4) For a very recent example of substituted 1,3-diene synthesis, see:
Liu, M.; Yang, P.; Karunananda, M. K.; Wang, Y.; Liu, P.; Engle, K. M. J.
Am. Chem. Soc. 2018, 140, 5805. For an example of Pd-catalyzed
couplings of allenic arrays that, by contrast, lead to allenic products, see:
Zhu, T.; Ma, S. Chem. Commun. 2017, 53, 6037.
̈
(5) (a) Petrone, D. A.; Isomura, M.; Franzoni, I.; Rossler, S. L.;
Carreira, E. M. J. Am. Chem. Soc. 2018, 140, 4697. (b) Kezuka, S.;
Kanemoto, K.; Takeuchi, R. Tetrahedron Lett. 2004, 45, 6403.
(6) (a) Moriya, T.; Furuuchi, T.; Miyaura, N.; Suzuki, A. Tetrahedron
1994, 50, 7961. (b) Nokami, J.; Maihara, A.; Tsuji, J. Tetrahedron Lett.
1990, 31, 5629. (c) Lipshutz, B. H.; Isley, N. A.; Fennewald, J. C.; Slack,
E. D. Angew. Chem., Int. Ed. 2013, 52, 10911.
Figure 1. Order of reactivity in Pd-catalyzed cross-couplings in micellar
media.
(7) Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H.
Angew. Chem., Int. Ed. 2017, 56, 847.
In conclusion, a mild and environmentally responsible
methodology has been developed as a general strategy to access
substituted 1,3-butadienes utilizing palladium catalysis under
micellar reaction conditions. The technology allows for facile
formation of new C−C bonds of an sp−sp2, sp2−sp2, or sp2−sp3
nature exclusively at the 2-position of the resulting diene.
Moreover, both functional group tolerance and chemoselectivity
appear to be high. These developments expand the toolbox of
technologies now available and further attest to the myriad of
possibilities that lie ahead within the new world of organic
synthesis in water.6c,14
(8) (a) Hartley, G. S. Nature 1937, 140, 281. (b) Broichhagen, J.;
Frank, J. A.; Trauner, D. Acc. Chem. Res. 2015, 48, 1947. (c) Dong, M.;
Babalhavaeji, A.; Samanta, S.; Beharry, A. A.; Woolley, G. A. Acc. Chem.
Res. 2015, 48, 2662. (d) Hansen, M. J.; Lerch, M. M.; Szymanski, W.;
Feringa, B. L. Angew. Chem., Int. Ed. 2016, 55, 13514. (e) Hoppmann,
C.; Maslennikov, I.; Choe, S.; Wang, L. J. Am. Chem. Soc. 2015, 137,
11218. (f) Banghart, M.; Borges, K.; Isacoff, E.; Trauner, D.; Kramer, R.
H. Nat. Neurosci. 2004, 7, 1381.
(9) WHO Model List of Essential Medicines 20th List (amended Aug
2017), [Online] March, 2017. World Health Organization. http://
2018).
(10) (a) Molander, G. A. J. Org. Chem. 2015, 80, 7837. (b) Molander,
G. A.; Katona, B. W.; Machrouhi, F. J. Org. Chem. 2002, 67, 8416.
(11) (a) Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461.
(b) Soderquist, J. A.; Najafi, M. R. J. Org. Chem. 1986, 51, 1330. (c) Lee,
N. R.; Linstadt, R. T. H.; Gloisten, D. J.; Gallou, F.; Lipshutz, B. H. Org.
Lett. 2018, 20, 2902.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Reaction optimization; details of experiments, analytical
data for all new compounds, and NMR spectra (PDF)
(12) As observed via NMR analysis of starting material and product.
(13) Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597.
(14) (a) Lipshutz, B. H.; Ghorai, S. Aldrichimica Acta 2012, 45, 3.
(b) Lipshutz, B. H.; Ghorai, S. Green Chem. 2014, 16, 3660.
(c) Lipshutz, B. H.; Gallou, F.; Handa, S. ACS Sustainable Chem. Eng.
2016, 4, 5838. (d) Lipshutz, B. H. J. Org. Chem. 2017, 82, 2806.
(e) Lipshutz, B. H. Curr. Opin. Green Sustain. Chem. 2018, 11, 1.
(f) Lipshutz, B. H.; Ghorai, S.; Cortes-Clerget, M. Chem. - Eur. J. 2018,
24, 6672.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX