equilibrium (ESIw, Fig. S4), and the equilibrium constants (Ket)
for 2 and 3 were 5.0 ꢀ 10ꢁ3 and 1.5 at 10 1C, respectively.
Consequently, the Ered values of 2 and 3 were determined to be
0.19 and 0.27 V versus SCE, respectively. The Ered values are in a
good correlation with their reactivities, suggesting that
Mn(V)–oxo corroles with a high Ered is a more powerful oxidant.
Interestingly, in the presence of an acid (i.e., HClO4;
10 equiv., 3.0 ꢀ 10ꢁ4 M), 1 showed a reactivity with bromo-
ferrocene (BrFc; Eox = 0.54 V versus SCE); 1 did not react
with BrFc in the absence of the acid. In addition, we found
that there was an equilibrium between 1 and BrFc, where the
final concentration of MnIII(TNPC) produced in the ET
reduction of 1 increased with an increase in the initial
concentration of BrFc, [BrFc]0. The equilibrium constant
(Ket) of 3.0 ꢀ 10ꢁ1 was determined at 10 1C by fitting the plot
(ESIw, Fig. S3b). The apparent reduction potential, Ered, of 1
in the presence of acid is then calculated with Ket value and the
Eox value of BrFc by eqn (2). The Ered of 1 in the presence of
HClO4 is 0.52 V versus SCE, which is 0.30 V higher than that
of 1 in the absence of HClO4. Similar trends were actually
reported in the non-heme FeIV(O) system.13
program from the Ministry of Education, Culture, Sports,
Science and Technology, Japan (to S.F.).
Notes and references
1 (a) P. C. A. Bruijnincx, G. van Koten and R. J. M. Klein Gebbink,
Chem. Soc. Rev., 2008, 37, 2716; (b) W. Nam, Acc. Chem. Res.,
2007, 40, 465, and review articles in the special issue; (c) P. R. Ortiz
de Montellano, Cytochrome P450: Structure, Mechanism,
and Biochemistry, Kluwer Academic/Plenum Publishers, New
York, 3rd edn, 2005; (d) M. M. Abu-Omar, A. Loaiza and
N. Hontzeas, Chem. Rev., 2005, 105, 2227; (e) I. G. Denisov,
T. M. Makris, S. G. Sligar and I. Schlichting, Chem. Rev., 2005,
105, 2253; (f) B. Meunier, S. P. de Visser and S. Shaik, Chem. Rev.,
2004, 104, 3947.
2 (a) A. Gunay and K. H. Theopold, Chem. Rev., 2010, 110, 1060;
(b) R. van Eldik, Coord. Chem. Rev., 2007, 251, 1649; (c) W. Nam,
Acc. Chem. Res., 2007, 40, 522; (d) Y. Watanabe, H. Nakajima and
T. Ueno, Acc. Chem. Res., 2007, 40, 554; (e) J. T. Groves, Proc.
Natl. Acad. Sci. U. S. A., 2003, 100, 3569; (f) S. Fukuzumi,
Y. Morimoto, H. Kotani, P. Naumov, Y.-M. Lee and W. Nam,
Nat. Chem, 2010, 2, 756.
3 B. Meunier, A. Robert, G. Pratviel and J. Bernadou, The Porphyrin
Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard,
Academic Press, San Diego, 2000, vol. 4, ch. 31, pp. 119–187.
4 (a) J. T. Groves, J. Lee and S. S. Marla, J. Am. Chem. Soc., 1997,
119, 6269; (b) N. Jin and J. T. Groves, J. Am. Chem. Soc., 1999,
121, 2923; (c) N. Jin, J. L. Bourassa, S. C. Tizio and J. T. Groves,
Angew. Chem., Int. Ed., 2000, 39, 3849; (d) D. Lahaye and
J. T. Groves, J. Inorg. Biochem., 2007, 101, 1786; (e) N. Jin,
M. Ibrahim, T. G. Spiro and J. T. Groves, J. Am. Chem. Soc.,
2007, 129, 12416.
5 (a) W. Nam, I. Kim, M. H. Lim, H. J. Choi, J. S. Lee and
H. G. Jang, Chem.–Eur. J., 2002, 8, 2067; (b) W. J. Song,
M. S. Seo, S. D. George, T. Ohta, R. Song, M.-J. Kang,
T. Tosha, T. Kitagawa, E. I. Solomon and W. Nam, J. Am. Chem.
Soc., 2007, 129, 1268; (c) J. Y. Lee, Y.-M. Lee, H. Kotani, W. Nam
and S. Fukuzumi, Chem. Commun., 2009, 704; (d) C. Arunkumar,
Y.-M. Lee, J. Y. Lee, S. Fukuzumi and W. Nam, Chem.–Eur. J.,
2009, 15, 11482.
6 (a) R. Zhang, J. H. Horner and M. Newcomb, J. Am. Chem. Soc.,
2005, 127, 6573; (b) Y. Shimazaki, T. Nagano, H. Takesue,
B.-H. Ye, F. Tani and Y. Naruta, Angew. Chem., Int. Ed., 2004,
43, 98.
7 (a) Z. Gross, G. Golubkov and L. Simkhovich, Angew. Chem., Int.
Ed., 2000, 39, 4045; (b) H.-Y. Liu, T.-S. Lai, L.-L. Yeung and
C. K. Chang, Org. Lett., 2003, 5, 617; (c) H.-Y. Liu, F. Yam,
Y.-T. Xie, X.-Y. Li and C. K. Chang, J. Am. Chem. Soc., 2009,
131, 12890; (d) Y. Gao, T. Akermark, J. Liu, L. Sun and
B. Akermark, J. Am. Chem. Soc., 2009, 131, 8726; (e) S. H. Kim,
H. Park, M. S. Seo, M. Kubo, T. Ogura, J. Klajn, D. T. Gryko,
J. S. Valentine and W. Nam, J. Am. Chem. Soc., 2010, DOI:
10.1021/ja1066465, .
8 (a) X.-Q. Zhu, H.-R. Li, Q. Li, T. Ai, J.-Y. Lu, Y. Yang and
J.-P. Cheng, Chem.–Eur. J., 2003, 9, 871; (b) S. Fukuzumi,
H. Kotani, Y.-M. Lee and W. Nam, J. Am. Chem. Soc., 2008,
130, 15134; (c) Y. J. Jeong, Y. Kang, A.-R. Han, Y.-M. Lee,
H. Kotani, S. Fukuzumi and W. Nam, Angew. Chem., Int. Ed.,
2008, 47, 7321; (d) C. Fertinger, N. Hessenauer-Ilicheva, A. Franke
and R. van Eldik, Chem.–Eur. J., 2009, 15, 13435; (e) L. Tahsini,
M. Bagherzadeh, W. Nam and S. P. de Visser, Inorg. Chem., 2009,
48, 6661.
The hydride transfer from NADH analogues to Mn(V)–oxo
corroles was also dependent significantly on the presence of
HClO4. Upon addition of 20 equiv. AcrHEt (6.0 ꢀ 10ꢁ4 M)
to a solution of 1 (3.0 ꢀ 10ꢁ5 M) containing 10 equiv. HClO4
(3.0 ꢀ 10ꢁ4 M), 1 reverted back to the starting MnIII(TNPC)
with the concomitant formation of AcrEt+ ion from AcrHEt
(ESIw, Fig. S5a). In the absence of HClO4, AcrEt(OH) was the
final product (see ESIw, Experimental section). First-order rate
constant (kobs), determined by the pseudo-first-order fitting of the
kinetic data for the decay of 1 or the formation of AcrEt+, was
5.8 ꢀ 10ꢁ2
s
ꢁ1; the rate constant is 100 times greater than that
determined in the absence of HClO4 (kobs = 5.6 ꢀ 10ꢁ4 sꢁ1
,
Fig. 1b and ESIw, Fig. S5b). This result is in line with the
observation that the presence of an acid increased the redox
potential of 1 (vide supra). We also found that the first-order rate
constant increased proportionally with increasing the acid
concentration (ESIw, S5b). Such acceleration of the rate results
from the enhancement of the ET process in Scheme 1 due to the
protonation of [MnIV(O)(Cor)]ꢁ (PCET).
In conclusion, we have reported the first example of the
oxidation of NADH analogues by manganese(V)–oxo corroles.
We have also demonstrated that hydride transfer from AcrH2
and its derivatives to MnV(O)(Cor) occurs via PCET, followed by
rapid electron transfer, as reported previously in the reaction of
[MnV(O)2(Prop)]ꢁ.5c The redox potentials of manganese(V)–oxo
corroles were determined for the first time using 1,10-dimethyl-
ferrocene as a one-electron reductant in the redox titration
experiments, and the Ered values were in a good correlation with
their reactivities in hydride-transfer reactions; the manganese-
(V)–oxo corroles with a high Ered showed a greater reactivity.
Finally, we have demonstrated that the presence of acid in
reaction solutions increases the redox potential of manganese-
(V)–oxo corroles and the rate of the hydride transfer from
hydride donors to manganese(V)–oxo corroles.
9 S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto and J. Otera,
J. Am. Chem. Soc., 1993, 115, 8960.
10 (a) S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, J. Am.
Chem. Soc., 1987, 109, 305; (b) S. Fukuzumi, K. Ohkubo,
Y. Tokuda and T. Suenobu, J. Am. Chem. Soc., 2000, 122, 4286.
11 In the ET reaction, the oxo moeity is removed by the reaction with
residual water. The Ket value in eqn (1) is defined including water.
12 (a) S. Fukuzumi, K. Okamoto, C. P. Gros and R. Guilard, J. Am.
Chem. Soc., 2004, 126, 10441; (b) Y.-M. Lee, H. Kotani,
T. Suenobu, W. Nam and S. Fukuzumi, J. Am. Chem. Soc.,
2008, 130, 434.
This Research was supported by KRF/MEST of Korea
through the CRI (to W.N.), GRL (2010-00353) (to S.F. and
W.N.), and WCU (R31-2008-000-10010-0) (to S.F. and W.N.)
and a Grant-in-Aid (No. 20108010 to S.F.) and a Global COE
13 S. Fukuzumi, H. Kotani, T. Suenobu, S. Hong, Y.-M. Lee and
W. Nam, Chem.–Eur. J., 2010, 16, 354.
c
8162 Chem. Commun., 2010, 46, 8160–8162
This journal is The Royal Society of Chemistry 2010