Article
Shiraishi et al.
Scheme 1. Structure Change from Unimer to Spherical Micelle for
Pluronic F127 Copolymer
conjugate15 and borondipyrrin (BODIPY) dyes16 have been
proposed, which are called molecular rotors. Upon photoexcita-
tion, these molecular rotors form a twisted intramolecular charge
transfer (TICT) excited state via a torsional motion of the
molecules. These rotors therefore exhibit two competing relaxa-
tion pathways: fluorescence emission and nonradiative deactiva-
tion from the TICT state.17 The formation of the TICT state is
suppressed with an increase in viscosity of the media due to a
suppression of the torsional motion,17 resulting in fluorescence
intensity enhancement. There are, however, no reports of molec-
ular rotors applied for determination of local viscosity of con-
densed matters.
Cyanine (CY) derivatives, such as hemicyanine and merocya-
nine, are one of the molecular rotors that form a TICT excited
state18 and show an increased fluorescence with a viscosity
increase.19 The fluorescence quantum yield (φF) of CY derivatives
depends on the viscosity and temperature of the media, and the
relationship is explained with the Debye-Stokes-Einstein
equation,19a as follows:
that the micelles have a less polar13 and viscous environment.14
Pandit et al.13a reported that the core polarity of a Pluronic F127
micelle is similar to that of ethanol based on a fluorescence
analysis with a pyrene probe. Grant et al.13b reported that the
corona is more polar than the core using coumarin probes.
Caragheorgheopol et al.12a and Ghosh et al.13c clarified that the
corona polarity becomes lower toward the micelle center based on
ESR and fluorescence analysis. Although the local polarity of
micelles has been revealed in detail, there are only a few reports
of local viscosity.14 Nivaggioli et al.14a reported that the core
viscosity is much larger than that of bulk solution by an excimer/
monomer emission intensity ratio of pyrene probes. Fluorescence
anisotropy analysis with rhodamine14b,c and coumarin probes14d
indicated that the corona viscosity is also larger than that of bulk
solution. Dutt et al.14e and Grant et al.14f reported that the core
viscosity is larger than the corona viscosity using dipyrrole and
coumarin probes. Although the local viscosity of micelles has
been outlined in these reports, detailed properties such as specific
viscosities for core and corona regions and their behaviors with
the change in temperature and polymer concentration remain to
be clarified. These data would be useful for better understanding
of local environment of micelles and may lead to a discovery of
new applications of Pluronic micelles.
ꢀ ꢁ
x
φF
η
¼ C ꢀ
ð1Þ
1- φF
T
where η is the solvent viscosity (cP), T is temperature (K), and x
and C are the constants. On the basis of this relationship, the local
viscosity of triblock copolymer micelles is determined using the
fluorescence quantum yields. In addition, the CY derivatives
exhibit a solvatochromic shift with a change in polarity of the
media.20 This therefore also allows a determination of local
polarity around the CY derivatives within the micelles by absorp-
tion analysis.
In the present work, the local viscosity of triblock copolymer
micelle was determined with CY derivatives. A popular Pluronic
F127 copolymer (PEO100-PPO65-PEO100) was employed be-
cause it undergoes a simple phase transition from a unimer to a
spherical micelle (Scheme 1), and other micelle structures such as
rod and lamellar do not form.3a,b We used four kinds of CY
derivatives containing an N,N-dimethylaniline moiety with dif-
ferent alkyl chain lengths (CY1, CY4, and CY8) and a phenol
moiety (CY-OH), as shown in Scheme 2. These derivatives have
different polarities and are located at different positions of the
micelle. This therefore allows the determination of the local
viscosity of different parts of the micelle solution by a simple
fluorescence analysis. We describe here the specific viscosity of the
respective parts and their properties as affected strongly by
temperature and polymer concentration.
One of the possible tools for determination of local viscosity of
micelles is fluorescent molecules showing a viscosity-sensitive
emission. Several molecules such as coumarin-julolidine
(12) (a) Caragheorgheopol, A.; Caldararu, H.; Dragutan, I.; Joela, H.; Brown,
W. Langmuir 1997, 13, 6912–6921. (b) Caragheorgheopol, A.; Schlick, S. Macro-
molecules 1998, 31, 7736–7745. (c) Malka, K.; Schlick, S. Macromolecules 1997, 30,
456–465.
(13) (a) Pandit, N.; Trygstad, T.; Croy, S.; Bohorquez, M.; Koch, C. J. Colloid
Interface Sci. 2000, 222, 213–220. (b) Grant, C. D.; DeRitter, M. R.; Steege, K. E.;
Fadeeva, T. A.; Castner, E. W. Langmuir 2005, 21, 1745–1752. (c) Ghosh, S.; Mandal,
U.; Adhikari, A.; Bhattacharyya, K. Chem.;Asian J. 2009, 4, 948–954. (d) Nivaggioli,
T.; Alexandridis, P.; Hatton, T. A. Langmuir 1995, 11, 730–737. (e) Bohorquez, M.;
Koch, C.; Trygstad, T.; Pandit, N. J. Colloid Interface Sci. 1999, 216, 34–40.
(f ) Alexandridis, P.; Nivaggioli, T.; Hatton, T. A. Langmuir 1995, 11, 1468–1476.
(g) Bakshi, M. S.; Sachar, S. J. Colloid Interface Sci. 2006, 296, 309–315. (h) Bakshi,
M. S.; Bhandari, P.; Sachar, S.; Mahajan, R. K. Colloid Polym. Sci. 2006, 284, 1363–
1370.
(14) (a) Nivaggioli, T.; Tsao, B.; Alexandridis, P.; Hatton, T. A. Langmuir 1995,
11, 119–126. (b) Nakashima, K.; Anzai, T.; Fujimoto, Y. Langmuir 1994, 10, 658–661.
(c) Jeon, S.; Granick, S.; Kwon, K.-W.; Char, K. J. Polym. Sci., Part B: Polym. Phys.
2002, 40, 2883–2888. (d) Kumbhakar, M.; Goel, T.; Nath, S.; Mukherjee, T.; Pal, H.
J. Phys. Chem. B 2006, 110, 25646–25655. (e) Dutt, G. B. J. Phys. Chem. B 2005, 109,
4923–4928. (f ) Grant, C. D.; Steege, K. E.; Bunagan, M. R.; Castner, E. W. J. Phys.
Chem. B 2005, 109, 22273–22284.
(15) (a) Haidekker, M. A.; Theodorakis, E. A. Org. Biomol. Chem. 2007, 5,
1669–1678. (b) Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E. A. J. Am.
Chem. Soc. 2006, 128, 398–399.
(17) (a) Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971–988.
(b) Bhattacharyya, K.; Chowdhury, M. Chem. Rev. 1993, 93, 507–535.
(18) (a) Huang, Y.; Cheng, T.; Li, F.; Huang, C.-H.; Wang, S.; Huang, W.;
Gong, Q. J. Phys. Chem. B 2002, 106, 10041–10050. (b) Cao, X.; Tolbert, R. W.;
McHale, J. L.; Edwards, W. D. J. Phys. Chem. A 1998, 102, 2739–2748. (c) Song, Q.;
Bohn, P. W.; Blanchard, G. J. J. Phys. Chem. B 1997, 101, 8865–8873.
(19) (a) Stsiapura, V. I.; Maskevich, A. A.; Kuzmitsky, V. A.; Uversky, V. N.;
Kuznetsova, I. M.; Turoverov, K. K. J. Phys. Chem. B 2008, 112, 15893–15902.
(b) Rei, A.; Hungerford, G.; Ferreira, M. I. C. J. Phys. Chem. B 2008, 112, 8832–8839.
(c) Yan, P.; Xie, A.; Wei, M.; Loew, L. M. J. Org. Chem. 2008, 73, 6587–6594.
(d) Shim, T.; Lee, M. H.; Kim, D.; Ouchi, Y. J. Phys. Chem. B 2008, 112, 1906–1912.
(e) Shim, T.; Lee, M. H.; Kim, D.; Kim, H. S.; Yoon, K. B. J. Phys. Chem. B 2009, 113,
966–969.
(20) (a) Shiraishi, Y.; Miyamoto, R.; Hirai, T Langmuir 2008, 24, 4273–4279.
(b) Ephardt, H.; Fromherz, P. J. Phys. Chem. 1993, 97, 4540–4547. (c) Hubener, G.;
Lambacher, A.; Fromherz, P. J. Phys. Chem. B 2003, 107, 7896–7902. (d) Fromherz, P.
J. Phys. Chem. 1995, 99, 7188–7192. (e) Wang, H.; Helgeson, R.; Ma, B.; Wudl, F.
J. Org. Chem. 2000, 65, 5862–5867. (f ) Abdel-Halim, S. T.; Awad, M. K. J. Mol.
Struct. 2005, 754, 16–24. (g) Morley, J. O.; Morley, R. M.; Docherty, R.; Charlton,
M. H. J. Am. Chem. Soc. 1997, 119, 10192–10202. (h) Chastrette, M.; Rajzmann, M.;
Chanon, M.; Purcell, K. F. J. Am. Chem. Soc. 1985, 107, 1–11. (i) Ortega, J. J. Chem.
Eng. Data 1985, 30, 5–7.
(16) (a) Kuimova, M. K.; Yahioglu, G.; Levitt, J. A.; Suhling, K. J. Am. Chem.
Soc. 2008, 130, 6672–6673. (b) Hungerford, G.; Allison, A.; McLoskey, D.; Kuimova,
M. K.; Yahioglu, G.; Suhling, K. J. Phys. Chem. B 2009, 113, 12067–12074. (c) Levitt,
J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K.; Phillips, D. J. Phys.
Chem. C 2009, 113, 11634–11642.
17506 DOI: 10.1021/la1028993
Langmuir 2010, 26(22), 17505–17512