6918
Y. Masuyama et al. / Tetrahedron Letters 52 (2011) 6916–6918
N
References and notes
N
N
R1
R2
1. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
OD
O
O
O
2002, 41, 2596.
Cu
P
P
2. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
3. Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
4. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
5. Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018.
A
6. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51.
7. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.;
Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
Figure 2. A final intermediate A for preparing 4 (21%-deuterated) in H2O.
8. Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
9. Chassaing, S.; Sido, A. S. S.; Alix, A.; Kumarraja, M.; Pale, P.; Sommer, J. Chem.
Eur. J. 2008, 14, 6713.
10. Shamim, T.; Paul, S. Catal. Lett. 2010, 136, 260.
11. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samaon, E.; Herscovici, J. Org. Lett.
2006, 8, 1689.
12. Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C.-M.; Baldino, C. M. Tetrahedron
Lett. 2005, 46, 2911.
13. Park, I. S.; Kwon, M. S.; Kim, Y.; Lee, J. S.; Park, J. Org. Lett. 2008, 10, 497.
14. Lipshutz, B. H.; Taft, B. R. Angew. Chem., Int. Ed. 2006, 45, 8235.
15. Kamata, K.; Nakagawa, Y.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc. 2008,
130, 15304. and references cited therein.
ing step was suggested.18 Part of deuterated phosphoric acids in
HAP, generated from 1-deutero-2-phenylethyne together with
the initial Cu(II)-acetylide intermediate, were probably maintained
until forming a final intermediate A6–8 as shown inFigure 2, similar
to the general 5-cuprated 1,2,3-triazole intermediates in Cu(I)-cat-
alyzed azide–alkyne cycloadditions. Thus, 21%-deuterated 4 would
be produced in dependence on the D–H exchange of deuterated
phosphoric acids with H2O.
In conclusion, at this point in time from the results of no detec-
tion of alkyne oxidative homocoupling products and XPS assign-
ment of Cu(II) species, we speculated that Cu(II) species on
CuHAP served as a reusable catalyst for the azide–alkyne [3+2]
cycloaddition without either any reducing agent or any base in
H2O under air. The phosphate group of HAP would serve efficiently
for the retention of Cu(II) species to HAP support. The smooth pro-
gress of the [3+2] cycloaddition in H2O seems to be attributable to
the locally high concentration of liquid substrates, namely both
azides and alkynes on the CuHAP surface, which probably bases
on the substrate-dispersing effect of H2O and the substrate-adsorb-
ing effect of CuHAP. Therefore the CuHAP-catalyzed azide–alkyne
[3+2] cycloaddition will be considered as one of the most environ-
mentally-benign processes.
16. (a) Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.;
Zhu, L. Org. Lett. 2009, 11, 4954; (b) Kuang, G.-C.; Michaels, H. A.; Simmons, J.
T.; Clark, R. J.; Zhu, L. J. Org. Chem. 2010, 75, 6540; (c) Kuang, G.-C.; Guha, P. M.;
Brotherton, W. S.; Simmons, J. T.; Stankee, L. A.; Nguyen, B. T.; Clark, R. J.; Zhu,
L. J. Am. Chem. Soc. 2011, 133, 13984. and references cited therein.
17. Reddy, K. R.; Rajgopal, K.; Kantam, M. L. Catal. Lett. 2007, 114, 36.
18. Namitharan, K.; Kumarraja, M.; Pitchumani, K. Chem. Eur. J. 2009, 15, 2755.
19. (a) Kaneda, K.; Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K. Catal. Surv. Asia 2004,
8, 231; (b) Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem.
Soc. 2004, 126, 10657.
20. Masuyama, Y.; Nakajima, Y.; Okabe, J. Appl. Catal. A Gen. 2010, 387, 107.
21. Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. Tetrahedron Lett. 2004,
45, 7319.
22. Calcium hydroxyapatite [Ca10(PO4)6(OH)2], purchased from Taihei Chemical
Industrial Co., Ltd., was employed after being calcined at 800 °C for 3 h.
23. (a) Kanazawa, T. Inorganic Phosphate Materials; Kodansha: Tokyo, 1989.
Elsevier: Amsterdam, p. 15; (b) Elliott, J. C. Structure and Chemistry of the
Apatites and Other Orthophosphates; Elsevier: Amsterdam, 1994. p. 111.
24. Typical procedure for CuHAP-catalyzed azide–alkyne [3+2] cycloaddition: To a
suspension of CuHAP (0.2 g, Cu 0.02 mmol) in water (1 mL) were added benzyl
azide (1; R1 = PhCH2, 0.13 g, 1 mmol) and phenylacetylene (2; R2 = Ph, 0.15 g,
1.5 mmol). After the suspension was shaken at 50 °C for 8 h under air in a
shaking aluminum block (Nissinrika Co., Block Shaker NX-70B, stroke: 10 mm,
speed: 220–230 rpm), ethyl acetate (8 mL) was added to the suspension. The
solution was separated from CuHAP by centrifugation followed by decantation.
The same operation with ethyl acetate (8 mL) was repeated five times. The
separated CuHAP was reused after being evacuated to dryness.
Dichloromethane (100 mL) was added to the residue after removing ethyl
acetate and water in the combined solution. The solution was dried over
anhydrous MgSO4. After evaporation of dichloromethane and purification by
column chromatography (silica gel, hexane/ethyl acetate = 3:1), 0.23 g (97%) of
1-benzyl-4-phenyl-1,2,3-triazole (3; R1 = PhCH2, R2 = Ph) was obtained as a
colorless solid. The structures of all products were confirmed by the
comparison of spectroscopic values (IR and NMR) with those of authentic
samples in the literature: see Supplementary data.
Acknowledgment
We thank the Cooperative Research Program of Catalysis Re-
search Center, Hokkaido University (Grant #2010-B-24).
Supplementary data
Supplementary data (XRD of HAP, fresh CuHAP and repetitively
reused CuHAP, XPS and XRF of fresh CuHAP and repetitively reused
CuHAP, and IR and NMR spectra of products) associated with this
article can be found, in the online version, at doi:10.1016/