P.-A. Fournier et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2670–2674
2673
Table 2
Key profiles of compounds 18, 28 and 32
Compound
18
28
32
a,b
Renin IC50 (nM)
Buffer
Plasma
F (%)
0.27
0.63
16
0.37
1.4
0
0.26
0.67
18
SD Rat (3 mpk PO, 0.5 mpk IV)
PO AUC (
Cl (mL/min/kg)
T1/2 (h)
Vdss (L/kg)
l
M h)
0.14
108
5.7
36
—
44
0
0.13
124
1.4
12
—
27
70
1.9
12
<1
—
c
Papp (Â10-6 cm sÀ1
)
Efficacy in dTGR (3 mpk PO)
max. BP ; (mm Hg)
duration (h)
18
—
8
hERG Ki (
CYP 3A4 IC50 (nM)
l
M)
11.7
33
68
>60
>50
18
—
31.2
29
10
Reversible (
Time dependent (% loss)d
l
M)d
CYP 3A4 kobs (minÀ1
)
0.093
<0.004
a
b
c
See Ref. 13 for assay protocols.
Average of at least two replicates.
See Ref. 9 for assay protocol.
d
Calculated as a percentage of the difference in the rate of CYP3A4-mediated conversion of testosterone (250
lM) to 6-b-hydroxy-testosterone before and after 30 min
incubation period with the compound (10
lM in DMSO). A 0% loss corresponds to no measurable time-dependent CYP 3A4 inhibition.
In conclusion, an isoxazole S1 linker was found to be a superior
replacement for the classic amide linker as well as the more recent
phenyl linker. Indeed, changing the 2-chlorophenyl linker in 1 for a
4-bromoisoxazole linker in 18 increased the plasma renin potency
by more than 10-fold and improved the attendant off-target pro-
file. Although compound 18 was found to inactivate CYP3A4 in a
time dependent manner, the judicious incorporation of either
polarity or a metabolic soft spot both proved to be viable strategies
for addressing this liability. Further optimization of the pharmaco-
kinetic properties of this series of inhibitors is currently underway
and will be reported in due course.
References and notes
2. Weber, M. A. Am. J. Hypertens. 1992, 5, 247S.
3. (a) Cooper, M. E. J. Hypertens. 2004, 17, 16S; (b) Norris, K.; Vaughn, C. Expert Rev.
Cardiovasc. Ther. 2003, 1, 5; (c) Cheng, H.; Harris, R. C. Expert Opin. Drug Saf.
2006, 5, 631; (d) Azizi, M.; Gradman, A. H.; Sever, P. S. J.R.A.A. Syst. 2009, 10, 65.
4. Zaman, M. A.; Oparil, S.; Calhoun, D. A. Nat. Rev. Drug Disc. 2002, 1, 621.
5. Hollenberg, N. K. Nat. Rev. Nephrol. 2010, 6, 49.
6. Lacombe, P.; Arbour, M.; Aspiotis, R.; Cauchon, E.; Chen, A.; Dubé, D.;
Falgueyret, J.-P.; Fournier, P.-A.; Gallant, M.; Grimm, E.; Han, Y.; Juteau, H.;
Liu, S.; Mellon, C.; Ramtohul, Y.; Simard, D.; St-Jacques, R.; Tsui, G. C. Bioorg.
Med. Chem. Lett. 2012, 22, 1953.
7. For a detailed discussion of the binding mode of renin inhibitors and of the
active site topology, see: Webb, R. L.; Schiering, N.; Sedrani, R.; Maibaum, J. J.
Med. Chem. 2010, 53, 7490.
8. Chen, A.; Cauchon, E.; Chefson, A.; Dolman, S.; Ducharme, Y.; Dubé, D.;
Falgueyret, J. P.; Fournier, P. A.; Gagné, S.; Gallant, M.; Grimm, E.; Han, Y.;
Houle, R.; Huang, J. Q.; Hughes, G.; Juteau, H.; Lacombe, P.; Lauzon, S.;
Lévesque, J. F.; Liu, S.; MacDinald, D.; Mackay, B.; Mackay, D.; Percival, D.; St-
Jacques, R.; Toulmond, S. Bioorg. Med. Chem. Lett. 2011, 21, 3976.
9. Chen, A.; Campeau, L.-C.; Cauchon, E.; Chefson, A.; Ducharme, Y.; Dubé, D.;
Falgueyret, J.-P.; Fournier, P.-A.; Gagné, S.; Grimm, E.; Han, Y.; Houle, R.; Huang,
J.-Q.; Lacombe, P.; Laliberté, S.; Lévesque, J.-F.; Liu, S.; MacDonald, D.; Mackay,
B.; McKay, D.; Percival, M. D.; Regan, C.; Regan, H.; St-Jacques, R.; Stump, G.;
Soisson, S.; Toulmond, S. Bioorg. Med. Chem. Lett. 2011, 21, 3970.
10. Lévesque, J.-F.; Bleasby, K.; Chefson, A.; Chen, A.; Dubé, D.; Ducharme, Y.;
Fournier, P.-A.; Gagné, S.; Gallant, M.; Grimm, E.; Hafey, M.; Han, Y.; Houle, R.;
Lacombe, P.; Laliberté, S.; MacDonald, D.; Mackay, B.; Papp, R.; Tschirret-Guth,
R. Bioorg. Med. Chem. Lett. 2011, 21, 5547.
Scheme 3. Reagents and conditions: Synthesis of 32: (a) 1.2 equiv TsOH,
THF:MeOH (1:4), 4 h, >99%; (b) 1.05 equiv BOC2O, 0.1 equiv Pd/C, MeOH, 18 h,
73%; (c) chiral resolution, AD column, 90:5:5 hexanes: i-PrOH: MeOH; (d) 3 equiv
DMP, 30 equiv pyridine DCM:t-BuOH (4:1), 18 h, 69%; (e) 1.5 equiv hydroxylamine
hydrochloride, 1.55 equiv Na2CO3, EtOH:H2O (9:1), >99%; (f) 1.15 equiv Chlora-
mine-T, MeOH, 20 min, then 3 equiv 8, 60 °C, 3 h; (g) 30 equiv 4 M HCl in dioxane,
RT, 1 h, 32% over 2 steps.
tin). Unlike compound 28, compound 32 is bioavailable (F = 18%) in
rats when dosed orally as a 3 mpk solution in 0.5% methyl cellu-
lose. As expected, the presence of a metabolic softspot in 32 was
manifested in a higher plasma clearance (Cl = 124 mL/min/kg)
and a shorter half life (T1/2 = 1.4 h) than compound 18.
When compounds 18 and 32 were given to hypertensive double
transgenic rats (dTGR) harboring both human renin and angioten-
sinogen, robust blood pressure lowering was observed with both
compounds.17 As is consistent with the higher volume of distribu-
tion and lower rate of plasma clearance in rat of compound 18, its
blood pressure lowering effect was both more extensive and pro-
longed than compound 32 in this hypertension efficacy model.
Unfortunately when compound 32 was profiled in higher order
species, namely beagle dogs and cynomolgus monkeys, the ob-
served systemic exposure following oral dosing was not sufficient
to warrant further characterization (data not shown).
11. Roth, G. J.; Liepold, B.; Müller, G. S.; Bestmann, H. J. Synthesis 2004, 59.
12. Meijere, A.; Kozhushkov, S.; Puls, C.; Haumann, T.; Boese, R.; Cooney, M. J.;
Scott, L. T. Angew. Chem. 1994, 106, 394.
13. Yedav, P. P.; Ahmad, G.; Maurya, R. Tetrahedron Lett. 2005, 46, 5621.
14. For a discussion on the binding mode of biaryl renin inhibitors, see: Lacombe,
P.; Aspiotis, R.; Bayly, C.; Chen, A.; Dubé, D.; Dubé, L.; Gagné, S.; Gallant, M.;
Gaudreault, M.; Grimm, E.; Houle, R.; Juteau, H.; Lévesque, J. F.; Liu, S.; McKay,
D.; Roy, P.; Toulmond, S.; Wu, T. Bioorg. Med. Chem. Lett. 2010, 20, 5822.
15. For an in depth analysis of CYP3A4 time-dependent inhibition observed in
series of renin inhibitors, see: Chen, A.; Dubé, D.; Dubé, L.; Gagné, S.; Gallant,
M.; Gaudreault, M.; Grimm, E.; Houle, R.; Lacombe, P.; Laliberté, S.; Liu, S.;