M. J. Matos et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5157–5160
32. Riederer, P.; Danielczyk, W.; Grunblatt, E. Neurotoxicology 2004, 25, 271.
5159
selectivity for the MAO-B isoenzyme. Most of them present MAO-B
inhibitory activity is in the low nanomolar range. The presence of a
bromo atom in position 8 of the coumarin improves the activity re-
spect to the presence of a bromo atom linked to the 3-phenyl ring.
The introduction of one para-methoxy group in the 3-phenyl ring
of the 8-bromo-6-methyl-3-phenylcoumarin improve to a great
extent the MAO-B inhibitory activity respect to the other prepared
derivatives. In fact, the introduction of a bromo atom improves the
pharmacologic potential of the 6-methyl-3-phenylcoumarins con-
firming that this lead could be effectively optimized in a candidate
for the treatment of neurodegenerative diseases. These finds have
encouraged us to continue the efforts towards the optimization of
the pharmacologic profile of 6-methyl-3-phenylcoumarin.
33. Youdim, M. B. H.; Fridkin, M.; Zheng, H. J. Neural Transm. 2004, 111, 1455.
34. Cesura, A. M.; Pletscher, A. Prog. Drug Res. 1992, 38, 171.
35. 3-(2-Bromophenyl)-6-methylcoumarin (3):
A
solution of 2-hydroxy-6-
methylbenzaldehyde (1, 1.0 g, 7.34 mmol) and 2-bromophenylacetic acid
(1.98 g, 9.18 mmol) in DMSO and DCC (2.36 g, 11.46 mmol) was heated in an
oil-bath at 110 °C for 24 h. Triturate ice (100 mL) and acetic acid (10.0 mL)
were added to the reaction mixture. After keeping it at room temperature for
2 h, the mixture was extracted with ether (3 ꢁ 25 mL). The organic layer was
extracted with sodium bicarbonate solution (50 mL, 5%) and then water
(20 mL). The solvent was evaporated under vacuum and the dry residue was
purified by FC (hexane/ethyl acetate 9:1) to give 3 (1.36 g, 59%) as a white
solid. Mp 141–142 °C. 1H NMR (CDCl3) d (ppm): 2.45 (s, 3H, –CH3), 7.28 (m, 1H,
H-40); 7.35 (m, 2H, H-7, H-8); 7.40 (m, 3H, H-5, H-50, H-60); 7.69 (d, 1H, H-30);
7.71 (s, 1H, H-4). 13C NMR (CDCl3) d (ppm): 20.8, 116.4, 118.7, 123.6, 127.4,
127.9, 128.6, 130.1, 131.3, 132.9, 133.0, 134.3, 135.9, 142.6, 152.0, 160.0. MS m/
z (%): 316 (5), 315 (38), 314 (M+, 100), 236 (32), 235 (80), 178 (22), 117 (7), 89
(7), 76 (9). Anal. Calcd for C16H11BrO2: C, 60.98; H, 3.52. Found: C, 60.92; H,
3.47.
Acknowledgments
General procedure for the preparation of 8-bromo-6-methyl-3-phenylcoumarins
(4–7):
A
solution of 3-bromo-2-hydroxy-6-methylbenzaldehyde (2,
0.56 mmol) and the correspondent phenylacetic acid (0.70 mmol) in DMSO
and DCC (0.87 mmol) was heated in an oil-bath at 110 °C for 24 h. Triturate ice
(20 mL) and acetic acid (3.0 mL) were added to the reaction mixture. After
keeping it at room temperature for 2 h, the mixture was extracted with ether
(3 ꢁ 25 mL). The organic layer was extracted with sodium bicarbonate solution
(50 mL, 5%) and then water (20 mL). The solvent was evaporated under
vacuum and the dry residue was purified by FC (hexane/ethyl acetate 9:1) to
give a white solid.
Thanks to the Spanish Ministry(PS0900501), to Xunta da Galicia
(PGIDIT09CSA030203PR and INCITE09E2R203035ES) and to FCT
(PTDC/QUI/70359/2006) for financial support. M.J.M. also thanks
FCT for a Ph.D. Grant (SFRH/BD/61262/2009).
References and notes
8-Bromo-6-methyl-3-phenylcoumarin (4): It was obtained with a yield of 45%.
Mp 158–159 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.41 (s, 3H, –CH3), 7.28 (d, 1H,
H-7, J = 2.3), 7.45 (m, 3H, H-30, H-40, H-50), 7.58 (m, 1H, H-5), 7.70 (m, 3H, H-4,
H-20, H-60). 13C NMR (CDCl3) d (ppm): 20.5, 109.4, 120.5, 127.1, 128.5, 129.0,
129.1, 134.3, 135.2, 135.6, 139.3, 148.3, 159.7. MS m/z (%): 316 (17), 315 (42),
314 (M+, 100), 313 (99), 288 (36), 286 (15), 285 (36), 207 (30), 178 (26), 89
(10), 76 (10). Anal. Calcd for C16H11BrO2: C, 60.98; H, 3.52. Found: C, 61.01; H,
3.56.
1. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem.
2005, 12, 887.
2. Hoult, J. R. S.; Payá, M. Gen. Pharmacol. 1996, 27, 713.
3. Kontogiorgis, C.; Hadjipavlou-Litina, D. J. Enzyme Inhib. Med. Chem. 2003, 18, 63.
4. Kabeya, L.; Marchi, A.; Kanashiro, A.; Lopes, N.; Silva, C.; Pupo, M.; Lucisano-
Valim, Y. Bioorg. Med. Chem. 2007, 15, 1516.
5. Carotti, A.; Altomare, C.; Catto, M.; Gnerre, C.; Summo, L.; De Marco, A.; Rose, S.;
Jenner, P.; Testa, B. Chem. Biodivers. 2006, 3, 134.
8-Bromo-6-methyl-3-(40-methoxyphenyl)coumarin (5): It was obtained with a
yield of 47%. Mp 144–145 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.40 (s, 3H, –
CH3), 3.87 (s, 3H, –OCH3), 6.98 (d, 2H, H-30, H-50, J = 7.1), 7.26 (s, 1H, H-7), 7.56
(s, 1H, H-5), 7.67 (dd, 3H, H-4, H-20, H-60, J = 6.9 and J = 1.1). 13C NMR (CDCl3) d
(ppm): 20.5, 55.4, 109.3, 114.0, 120.7, 126.7, 126.9, 128.5, 129.9, 135.2, 137.8,
148.1, 159.9, 160.3. MS m/z (%): 346 (99), 345 (15), 344 (M+, 100), 303 (53), 301
(54), 275 (15), 207 (15), 166 (17), 165 (72), 138 (17), 89 (13), 76 (14), 58 (41).
Anal. Calcd for C17H13BrO3: C, 59.15; H, 3.80. Found: C, 59.17; H, 3.86.
8-Bromo-6-methyl-3-(30,50-dimethoxyphenyl) coumarin (6): It was obtained
with a yield of 46%. Mp 165–166 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.40 (s,
3H, –CH3), 3.83 (s, 6H, (–OCH3)2), 6.51 (t, 1H, H-40 J = 2.3), 6.83 (d, 2H, H-20, H-
60, J = 2.3), 7.26 (s, 1H, H-7), 7.57 (s, 1H, H-5), 7.70 (s, 1H, H-4). 13C NMR (CDCl3)
d (ppm): 21.0, 56.0, 101.6, 107.2, 109.9, 120.8, 127.6, 129.2, 135.7, 136.1, 136.6,
140.0, 148.7, 160.0, 161.2. MS m/z (%): 376 (99), 375 (26), 374 (M+, 100), 238
(37), 209 (14), 181 (36), 165 (30), 153 (18), 152 (41), 151 (17), 126 (15), 76
(22). Anal. Calcd for C18H15BrO4: C, 57.62; H, 4.03. Found: C, 57.63; H, 3.98.
8-Bromo-6-methyl-3-(30,40,50-trimethoxyphenyl) coumarin (7): It was obtained
with a yield of 50%. Mp 167–168 °C. 1H NMR (CDCl3) d (ppm), J (Hz): 2.41 (s,
3H, –CH3), 3.91 (d, 9H, (–OCH3)3, J = 5.8), 6.92 (s, 2H, H-20, H-60), 7.28 (d, 1H, H-
7, J = 6.5), 7.59 (d, 1H, H-5, J = 1.3), 7.70 (s, 1H, H-4). 13C NMR (CDCl3) d (ppm):
20.5, 56.1, 56.3, 60.9, 106.0, 106.2, 109.4, 120.4, 127.0, 128.7, 129.7, 135.3,
135.6, 138.9, 148.1, 153.1, 159.7. MS m/z (%): 407 (21), 406 (99), 405 (21), 404
(M+, 100), 391 (56), 389 (56), 363 (19), 361 (19), 303 (21), 247 (13), 187 (15),
186 (15), 139 (19). Anal. Calcd for C19H17BrO5: C, 56.31; H, 4.23. Found: C,
56.28; H, 4.19.
6. Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.;
Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L.; Meggio, F.; Moro,
S. J. Med. Chem. 2008, 51, 752.
7. Rendenbach-Müller, B.; Traut, M.; Weifenbach, H. Bioorg. Med. Chem. Lett. 1994,
4, 1195.
8. Matos, M. J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.;
Uriarte, E. Bioorg. Med. Chem. Lett. 2009, 19, 3268.
9. Matos, M. J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E. Bioorg. Med.
Chem. Lett. 2009, 19, 5053.
10. Santana, L.; Uriarte, E.; González-Díaz, H.; Zagotto, G.; Soto-Otero, R.; Méndez-
Álvarez, E. J. Med. Chem. 2006, 49, 1118.
11. Santana, L.; González-Díaz, H.; Quezada, E.; Uriarte, E.; Yáñez, M.; Viña, D.;
Orallo, F. J. Med. Chem. 2008, 51, 6740.
12. Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.; Soto-Otero, R.;
Méndez-Álvarez, E.; Carotti, A. J. Med. Chem. 2006, 49, 4912.
13. Gnerre, C.; Catto, M.; Leonetti, F.; Weber, P.; Carrupt, P.; Altomare, C.; Carotti,
A.; Testa, B. J. Med. Chem. 2000, 43, 4747.
14. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini,
P.; Alacaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697.
15. Frémont, L. Life Sci. 2000, 66, 663.
16. Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yánez, M.; Fraiz, N.; Alcaide, C.;
Cano, E.; Orallo, F. Bioorg. Med. Chem. Lett. 2006, 16, 257.
17. Orallo, F. In Resveratrol in Health and Disease; Aggarwal, B. B., Shishodia, S., Eds.;
CRC Press: USA, 2005; p 577.
18. Leiro, J.; Álvarez, E.; Arranz, J.; Laguna, R.; Uriarte, E.; Orallo, F. J. Leukocyte Biol.
2004, 75, 1156.
36. Li, W.; Huanwang, J.; Xiuli, B.; Tao, C.; Lili, J.; Yongmin, L. Catal. Commun. 2007,
8, 80.
19. Orallo, F. Curr. Med. Chem. 2008, 15, 1887.
20. De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 12684.
21. Binda, C.; Li, M.; Hubalek, F.; Restelli, N.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 9750.
37. Hans, N.; Singhi, M.; Sharma, V.; Grover, S. K. Indian J. Chem., Sect B 1996, 35B,
1159.
38. Mohanty, S.; Makrandi, J. K.; Grover, S. K. Indian J. Chem., Sect B 1989, 28B, 766.
´
39. Kamat, S. P.; DSouza, A. M.; Paknikar, S. K.; Beaucahmp, P. S. J. Chem. Res., Synop.
2002, 242.
22. Yánez, M.; Fraiz, N.; Cano, E.; Orallo, F. Biochem. Biophys. Res. Commun. 2006,
344, 688.
23. Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.
E.; Mattevi, A. J. Med. Chem. 2007, 50, 5848.
24. Novaroli, L.; Daina, A.; Favre, E.; Bravo, J.; Carotti, A.; Leonetti, F.; Catto, M.;
Carrupt, P.; Reist, M. J. Med. Chem. 2006, 49, 6264.
40. Determination of human monoamine oxidase (hMAO) isoform activity: The effects
of the test compounds on hMAO isoform enzymatic activity were evaluated by
a fluorimetric method. Briefly, 0.1 mL of sodium phosphate buffer (0.05 M, pH
7.4) containing the test drugs in various concentrations and adequate amounts
of recombinant hMAO-A or hMAO-B required and adjusted to obtain in our
experimental conditions the same reaction velocity [165 pmol of p-tyramine/
25. Dostert, P.; Strolin Benedetti, M.; Jafre, M. In Monoamine Oxidase: Basic and
Clinical Frontiers; Kamijo, K., Usdin, E., Nagausu, T., Eds.; Excerpta Medica:
Amsterdam, 1982; p 197.
26. Singer, T. P., Muller, F., Eds.; CRC Press: London, 1991; p 437.
27. Binda, C.; Li, M.; Hubálek, F.; Restelli, N.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 9750.
28. Yamada, M.; Yasuhara, H. Neurotoxicology 2004, 25, 11.
29. Rudorfer, M. V.; Potter, V. Z. Drugs 1989, 37, 713.
30. Palhagen, S.; Heinonen, E.; Hagglund, J.; Kaugesaar, T.; Maki-Ikola, O.; Palm, R.
Neurology 2006, 66, 1200.
min (hMAO-A: 1.1
oxidized to p-hydroxyphenylacetaldehyde/min/mg protein; hMAO-B: 7.5
lg protein; specific activity: 150 nmol of p-tyramine
l
g
protein; specific activity: 22 nmol of p-tyramine transformed/min/mg
protein)] were placed in the dark fluorimeter chamber and incubated for
15 min at 37 °C. The reaction was started by adding (final concentrations)
200
tyramine. The production of H2O2 and, consequently, of resorufin was
l
M AmplexÒ Red reagent, 1 U/mL horseradish peroxidase and 1 mM p-
quantified at 37 °C in
a multidetection microplate fluorescence reader
(FLX800™, Bio-TekÒ Instruments, Inc., Winooski, VT, USA) based on the
fluorescence generated (excitation, 545 nm, emission, 590 nm) over a 15 min
period, in which the fluorescence increased linearly. Control experiments were
31. Guay, D. R. Am. J. Geriatr. Pharmacother. 2006, 4, 330.