C O M M U N I C A T I O N S
Table 1. Epoxidations Catalyzed by 1 with CH3CO3Ha
analogues are in progress to understand the nature of the active
oxidant and improve on the low observed enantio- and diastereo-
selectivities.34
oxidant
(equiv)
GC
yieldb
isolated
yieldc
alkene
mol % 1
1
2
3
4
5
6
7
8
cyclooctene
cyclohexene
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.5
0.1
1.0
1.0
0.5
0.5
1.2
1.2
2
1.2
1.2
1.2
1.2
1.2
2
1.2
1.2
1.2
1.2
1.2
3
99 (1)
98 (2)
92 (3)
99 (1)e
99 (1)f
97 (1)
95 (3)
99 (1)
89 (3)
98 (1)
97 (4)
94 (4)h
90 (1)
97 (1)
98 (1)i
97 (2)j
90 (4)d
85 (2)
Acknowledgment. We are grateful to the National Institutes
of Health (Grant GM50730) for financial support of this work.
1-methyl-cyclohexene
cis-2-heptene
trans-2-heptene
2-methyl-1-pentene
1-heptene
vinyl cyclohexane
allyl acetate
methyl methacrylate
2-cyclohexen-1-one
ethyl sorbateg
Supporting Information Available: Experimental procedures for
the synthesis of 1 and 2, and for the epoxidation of olefins with 2 (PDF).
Crystallographic data of 1 and 2 (CIF). This material is available free
89 (3)
90 (2)
9
References
10
11
12
13
14
15a
15b
86 (6)
88 (2)
(1) White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001,
123, 7194.
(2) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem.
Soc. 1997, 119, 6189.
(3) Coperet, C.; Adolfsson, H.; Sharpless, K. B. Chem. Commun. 1997, 1565.
(4) Tian, H. Q.; She, X. G.; Xu, J. X.; Shi, Y. Org. Lett. 2001, 3, 1929.
(5) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. J. Org. Chem.
1996, 61, 8310.
(6) Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose, E. J.
Am. Chem. Soc. 1999, 121, 460.
cis-â-methylstyrene
trans-â-methylstyrene
R-(-)-carvone
88 (2)i
91 (2)j
R-(-)-carvone
1
a Olefin (0.5 M in CH3CN), 32% CH3CO3H in acetic acid/water,
25 °C, 5 min. b Yields determined by GC versus internal standard, average
of three runs. Conversion for all substrates is >95%. The numbers in
parentheses represent a standard deviation of a minimum of three experi-
ements. c Isolated yields, 1-g scale. d 0.25-mol scale, 88% yield. e 98% cis-
(7) Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 1215.
(8) DeVos, D. E.; Sels, B. F.; Reynaers, M.; Rao, Y. V. S.; Jacobs, P. A.
Tetrahedron Lett. 1998, 39, 3221.
(9) DeVos, D.; Bein, T. Chem. Commun. 1996, 917.
(10) Zuwei, X.; Ning, Z.; Yu, S.; Kunlan, L. Science 2001, 292, 1139.
(11) mep ) N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine. R,R-
mcp ) N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)cyclohexane-1R,2R-di-
amine.
epoxide, 2% trans-epoxide. 97% trans-epoxide, 3% cis-epoxide. g trans,trans-
f
CH3CH2dCH2CH2dCH2-CO2CH2CH3. h 4:1 mixture of 4,5-monoepoxide
and 2,3-monoepoxide. i 0 °C diepoxide product, 20% de. j -20 °C, R-
carvone 8,9-monoepoxide, 15% de.
(12) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. ReV. 1996,
96, 2841.
(13) Ono, M.; Okura, I. J. Mol. Catal. 1990, 61, 113.
(14) Higgins, I. J.; Best, D. J.; Hammond, R. C. Nature 1981, 291, 169.
(15) Costas, M.; Tipton, A. K.; Chen, K.; Jo, D. H.; Que, L. J. Am. Chem.
Soc. 2001, 123, 6722.
suggests the resting form of the catalyst is MnII and that the optical
changes are associated with catalyst decomposition. A Lewis-acid
assisted oxidation is possible, but [ZnII(R,R-mcp)]2+, a redox-
innocent complex, is unable to epoxidize olefins under identical
conditions. Thus, a higher-valent manganese species is suggested.
Intermolecular competition experiments with several pairs of
olefin substrates at low substrate conversion support an electrophilic
oxidant; the more electron-rich olefins are epoxidized at faster rates,
e.g. allyl acetate < vinyl cyclohexane < cyclooctene (1:15:120).
The prominent chemoselectivity of porphyrin or salen metal-oxo
oxidants for cis-olefins over trans-olefins is not observed for 1;
cis-2-heptene is preferentially oxidized to trans-2-heptene in a 3:1
ratio while cis-â-methylstyrene and trans-â-methylstyrene are
epoxidized in a 1:1 ratio. A slight loss of the original olefin
stereochemistry in the epoxide products (∼3%) suggests either a
short-lived radical intermediate or the presence of more than one
oxidant in the solution.
Regioselective epoxidation of polyolefins (entries 12 and 15)
further supports an electrophilic oxidant with 1. Ethyl sorbate yields
a 4:1 mixture of the 4,5- and 2,3-monoepoxide, respectively. High
regioselectivity is possible if the olefin groups are electronically
distinct, and the reaction temperature is reduced. The terminal olefin
of R-carvone is selectively epoxidized at -20 °C in 15 min with 1
equiv of peracetic acid (Scheme 2). Three equivalents of oxidant
at 0 °C gives the diepoxide of R-carvone in high yield. In both
cases, only a modest disastereoselectivity (de) of the terminal olefin
epoxidation is observed (∼20%).
(16) Crystal Data for 1: a pale brown rectangular plate from acetonitrile/ether;
monoclinic P21, a ) 9.1024(5) Å, b ) 9.7740(6) Å, c ) 16.2918(8) Å,
â) 101.871(2), V ) 1418.4(1) Å3, 2230 reflections (4° < 2θ < 49.42°),
R(Rw) ) 0.045(0.108). Crystal Data for 2: a colorless rhombic crystal
from acetonitrile/ether; orthorhomic Pbca, a ) 9.4259(6) Å, b )
17.4826(9) Å, c ) 30.462(2) Å, V ) 5019.6(4) Å3, 3401 reflections
(4° < 2θ < 43.94°), R(Rw) ) 0.036 (0.095).
(17) Glerup, J.; Goodson, P. A.; Hazell, A.; Hazell, R.; Hodgson, D. J.;
McKenzie, C. J.; Michelsen, K.; Rychlewska, U.; Toftlund, H. Inorg.
Chem. 1994, 33, 4105.
(18) Arulsamy, N.; Glerup, J.; Hazell, A.; Hodgson, D. J.; McKenzie, C. J.;
Toftlund, H. Inorg. Chem. 1994, 33, 3023.
(19) Goodson, P. A.; Glerup, J.; Hodgson, D. J.; Michelsen, K.; Weihe, H.
Inorg. Chem. 1991, 30, 9.
(20) Che, C. M.; Tang, W. T.; Wong, K. Y.; Wong, W. T.; Lai, T. F. J. Chem.
Res. (S) 1991, 30.
(21) Battioni, P.; Renaud, J. P.; Bartoli, J. F.; Reinaartiles, M.; Fort, M.;
Mansuy, D. J. Am. Chem. Soc. 1988, 110, 8462.
(22) Yuan, L. C.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 1643.
(23) Groves, J. T.; Stern, M. K. J. Am. Chem. Soc. 1987, 109, 2.
(24) Banfi, S.; Montanari, F.; Quici, S.; Barkanova, S. V.; Kaliya, O. L.;
Kopranenkov, V. N.; Lukyanets, E. A. Tetrahedron Lett. 1995, 36, 2317.
(25) Palucki, M.; McCormick, G. J.; Jacobsen, E. N. Tetrahedron Lett. 1995,
36, 5457.
(26) Palucki, M.; Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem.
Soc. 1994, 116, 12135.
(27) The peracetic acid used in ref 24 is prepared to be sulfuric acid and H2O2
free.
(28) Peracetic acid solutions are generally prepared from H2O2 and HOAc using
1% sulfuric acid catalyst.
(29) The formation constant for [MnIICDTA]2- is ∼4 orders of magnitude larger
than [MnIIEDTA]2-. CDTA ) trans-cyclohexyl-1,2-diamine tetraacetic
acid.
(30) The observed ee’s are small. At room temperature 1/CH3CO3H only gives
a 10% ee for vinyl cyclohexane. [MnII(6-methyl-R,R-mcp)](CF3SO3)2
shows no reactivity under these conditions.
(31) This system does not exclusively provide the epoxide product for sensitive
olefins such as styrene, ethyl acrylate, or R-pinene.
Scheme 2. Epoxidation of R-(-)-Carvone
(32) The dependence of the epoxidation reaction on the counterion is minimal.
-
-
Both the CF3SO3 and CH3CO2 complexes have identical reactivity.
However, the chloride complex provides only 25% conversion of vinyl
cyclohexane under the same conditions and time. Consequently, the
catalyst can be formed in situ by combining the available Mn(OAc)2 salt
and R,R-mcp. In addition, these reactions can be run in an identical manner
when glacial acetic acid is used as the solvent.
(33) Evans, D. F. J. Chem. Soc. 1959, 2003.
(34) [FeIImep]2+ and [FeIIR,R-mcp]2+ have a similar scope of reactivity but
require higher catalyst loadings. P. Hung, unpublished results.
This system provides an operationally simple and rapid way to
epoxidize a wide scope of olefins using low catalyst loadings.
Mechanistic studies as well as comparative studies of the iron
JA029962R
9
J. AM. CHEM. SOC. VOL. 125, NO. 18, 2003 5251