13
Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc.,
2006, 128, 6536-6537. c) Kobayashi, M.; Okamoto, S.
Tetrahedron Lett. 2006, 47, 4347-4350. d) Joannesse, C.;
(C(5)H), 126.9 (C(4)H), 127.0 (ArC(4)H), 127.4 (ArC(4)H),
128.3 (ArCH), 128.5 (ArCH), 128.7 (ArCH), 129.0 (ArCH),
138.2 (ArC(1)), 140.4 (ArC(1)), 170.7 (C=O); HRMS (ESI+)
C21H24O2N+ [M+H]+ found: 322.1795, reuiqres: 322.1802 (−2.2
ppm).
ACCEPTED MANUSCRIPT
Johnston, C. P.; Concellón, C; Simal, C.; Philp, D.; Smith, A. D.
Angew. Chem. Int. Ed. 2009, 48, 8914-8918. For recent reviews,
see: e) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev., 2014, 43,
6214-6226. f) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem.
Soc. Rev. 2012, 41, 2109-2121. g) Merad, J.; Pons, J.-M.; Chuzel,
O.; Bressy, C. Eur. J. Org. Chem., DOI: 10.1002/ejoc.201600399
7. For selected examples of isothiourea-catalysed processes from this
laboratory see a) Simal, C; Lebl, T.; Slawin, A. M. Z.; Smith, A.
D. Angew. Chem. Int. Ed. 2012, 51, 3653-3657. b) Morrill, L. C.;
Douglas, J.; Lebl, T.; Slawin, A. M. Z.; Fox, D. J.; Smith, A. D.
Chem. Sci. 2013, 4, 4146-4155. c) Stark, D. G.; Morrill, L. C.;
Yeh, P.-P.; Slawin, A. M. Z.; O'Riordan, T. J. C.; Smith, A. D.;
Angew. Chem. Int. Ed. 2013, 52, 11642-11646. d) Yeh, P.-P.;
Daniels, D. S. B.; Fallan, C.; Gould, E.; Simal, C.; Taylor, J. E.;
Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem., 2015, 13,
2177-2191
Ethyl (2S,3S)-3-phenylpiperidine-2-carboxylate 45
A
solution of ethyl (2S,3S)-1-benzyl-3-phenyl-1,2,3,6-
tetrahydropyridine-2-carboxylate (143 mg, 0.45 mmol, 1.0
equiv., 92:8 dr) in EtOAc (4.5 mL) was treated with AcOH (27
µL, 0.45 mmol, 1.0 equiv.) and Pd/C (47 mg, 10% wt., 0.045
mmol, 0.1 equiv.). The resulting suspension was degassed with
H2 for 15 min, then left stirring under an atmosphere of H2
(balloon, 1 atm) for 48 h at rt. The reaction was diluted with
EtOAc (30 mL), filtered through Celite® (eluent EtOAc), washed
with aq. sat. NaHCO3 (30 mL), dried over MgSO4 and
concentrated in vacuo. The crude residue was purified by flash
column chromatography (10-15% Et2O/CH2Cl2) to give the
product as a colourless oil (63 mg, 60%, >95:5 dr); HPLC
analysis, Chiralpak AS-H (1% IPA/hexane, flow rate 1.5
mL/min, 211 nm, 40 °C) tR Major 3.7 min, Minor 3.4 min, 94%
ee; [α]ꢁꢀꢂ +11.0 (c 1, CHCl3); υmax (film, cm−1) 3348, 2932, 1728,
8. West,T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. J.
Am. Chem. Soc. 2014, 136, 4476-4479.
9. (a) Workman, J. A.; Gaarrido, N. P.; Sanҫon, J.; Roberts, E.;
Wessel, H. P.; Sweeney, J. B. J. Am. Chem. Soc. 2005, 127, 1066-
1067 (b) Arboré, A. P. A.; Cane-Honeysett, D. J.; Coldham, I.;
Middleton, M. L. Synlett 2000, 236-238.
10. For the initial postulate of 1,5-S•••O interactions as a control
element in isothiourea catalysis see (a) Birman, V. B.; Li, X.; Han,
Z. Org. Lett., 2007, 9, 37-40. For other manuscripts of interest see
(b) Abbasov, M. E.; Hudson, B. M.; Tantillo, D. J.; Romo, D. J.
Am. Chem. Soc., 2014, 136, 4492-4495. (c) Liu, P.; Yang, X.;
Birman, V. B.; Houk, K. N. Org. Lett., 2012, 14, 3288–3291. (d).
Robinson, E. R. T.; Walden, D. M.; Fallan, C.; Greenhalgh, M. D.;
Cheong, P. H.-Y.; Smith, A. D. Chem. Sci. 2016,. DOI:
10.1039/C6SC00940A. Romo and Tantillo (ref 9b) have probed
the nature of 1,5-S•••O interactions of α,β-unsaturated acyl
ammonium species with NBO and postulate this interaction is due
to a number of orbital interactions. In particular, unfavorable nS
σ*C-H/σC-H interactions disfavor alternative conformations with an
O-C-N-C dihedral angle of 180°.
11. See the following publications for a selection of discussions on the
origin of this interaction: (a) Zhang, X.; Gong, Z.; Li, J.; Lu, T. J.
Chem. Inf. Model., 2015, 55, 2138-2153; (b) Ángyán, J. G.;
Kucsman, Á.; Poirier, R. A.; Csizmadia, I. G. J. Mol. Struct.:
Theochem 1985, 123, 189−201; (c) Murray, J. S.; Lane, P.;
Politzer, P.; Int. J. Quantum Chem. 2008, 108, 2770−2781; (d)
Iwaoka, M.; Takemoto, S.; Tomoda, S.; J. Am. Chem. Soc. 2002,
124, 10613−10620; (e). Brameld, K. A.; Kuhn, B.; Reuter, D. C.;
Stahl, M. J. Chem. Inf. Model., 2008, 48, 1-24.
1
1493, 1452, 1370, 1246, 1200, 1179, 1128, 1032, 862; H NMR
(500 MHz, CDCl3) δH 0.94 (3H, t, J 7.1, OCH2CH3), 1.52 (1H,
ddp, J 14.5, 7.3, 3.8, C(6)HH), 1.78 (1H, dddt, J 12.8, 9.0, 7.7,
3.7, C(6)HH), 1.89 (1H, ddt, J 13.2, 8.8, 4.3, C(5)HH), 1.98 (1H,
br. s, NH), 2.11 (1H, dtd, J 13.6, 7.1, 3.7, C(5)HH), 2.82 (1H,
ddd, J 11.6, 7.9, 3.6, C(4)HH), 3.20-3.34 (2H, m, C(3)H +
C(4)HH), 3.82 (1H, d, J 4.5, C(2)H), 3.92 (2H, qd, J 7.1, 3.0,
OCH2CH3), 7.12-7.21 (1H, m, Ar(4)H), 7.22-7.31 (2H, m,
Ar(2,6)H), 7.40-7.48 (2H, m, Ar(3,5)H); 13C{1H} NMR (126
MHz, CDCl3) δC 14.0 (OCH2CH3), 23.3 (C(6)H2), 28.9 (C(5)H2),
42.2 (C(3)H), 44.5 (C(4)H2), 60.3 (OCH2CH3), 61.5 (C(2)H),
126.3 (ArC(4)H), 128.1 (ArC(2,6)H), 128.7 (ArC(3,5)H), 142.7
(ArC(1)), 172.7 (C=O); HRMS (ESI+) C14H20O2N+ [M+H] found:
234.1483, requires: 234.1489 (−2.6 ppm).
Acknowledgments
The research leading to these results (T.H.W.) has received
funding from the ERC under the European Union's Seventh
12. Lemaire-Audoire, S.; Savignac, M.; Genêt, J. P.; Bernard, J.-M.
Tetrahedron Lett. 1995, 36, 1267-1270.
Framework Programme (FP7/2007-2013)
/
E.R.C. grant
13. Duthion, B.; Pardo, D. G.; Cossy, J. Org. Lett. 2010, 12, 4620-
4623.
agreement n° 279850 and the European Union (Marie Curie ITN
“SubiCat” PITN-GA-2013-607044) (S. S. M. S.).23 A.D.S. thanks
the Royal Society for a Wolfson Research Merit Award. We also
thank the EPSRC UK National Mass Spectrometry Facility at
Swansea University.
14. For recent methodology for the synthesis of α-amino-β-aryl amino
acids see: (a) Zhang, X.; He, G.; Chen, G. Org. Biomol, Chem.,
2016, 14, 5511-5515. (b) He, F.-S.; Jin, J.-H.; Yang, Z.-T.; Yu, X.;
Fossey, J. S.; Deng, W.-P., ACS Catal. 2016, 6, 652-656. (c) He,
Z.-T; Zhao, Y.-S.; Tian, P.; Wang, C.-C.; Dong, H.-Q.; Lin, G.-Q.
Org. Lett. 2014, 16, 1426-1429. (d) Gilfillan, L.; Artschwager, R.;
Harkiss, A. H.; Liskamp, R. M.; Sutherland, A. Org. Biomol.
Chem. 2015, 13, 4514-4523. (e) He, J.; Li, S.; Deng, Y.; Fu, H.;
Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q Science,
2014, 343 1216-1220.
15. Liu, M.; Shen, A.; Sun, X.-W.; Deng, F.; Xu, M.-H.; Lin, G.-Q.
Chem. Commun. 2010, 46, 8460-8462.
16. (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52,
6752-6756. (b) Meanwell, N. A. Chem. Res. Toxicol. 2011, 24,
1420-1456. (c) McGrath, N. A.; Brichacek, M.; Njardarson, J. T.
J. Chem. Educ. 2010, 87, 1348-1349.
References and notes
1.
(a) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902 (b) Bao,
H.; Tambar, U. K. [2,3]-Rearrangements of Ammonium
Zwitterions, in Molecular Rearrangements in Organic Synthesis;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015 (c) Murphy,
G. K.; Stewart, C.; West, F. G. Tetrahedron 2013, 69, 2667-2686
(d) Sweeney, J. B. Chem. Soc. Rev. 2009, 38, 1027-1038 (e) West,
T. H.; Spoehrle, S. S. M.; Kasten, K.; Taylor, J. E.; Smith, A. D.
ACS Catal. 2015, 5, 7446-7479.
17. Ye, S.; Yang, W.; Coon, T.; Fanning, D.; Neubert,T.; Stamos, D.;
Yu, J. Q. Chem. Eur. J. 2016, 22, 4748-4752.
2. Wu, Y. D.; Houk, K. N.; Marshall, J. A. J. Org. Chem. 1990, 55,
1421-1423.
3. Jemison, R. W.; Ollis, W. D. J. Chem. Soc. Chem Commun. 1969,
294-295.
4. Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981,
46, 5094-5102.
5. Soheili, A. Tambar, U. K. J. Am. Chem. Soc. 2011, 133, 12956-
12959.
18. (a)Mertz, E.; Edmondson, S. D.; Shao, N.; Neelamkavil, S.; Poker,
C.; Hussain, Z.; Guo, Z.; Kevin, N. J.; Zang, Y.; He, J.
WO2015047973 (A1), US, 2015. For other examples of piperidine
analogues in drug discovery see: (b)Yu, Q.-Y.; Zhong, H.-M; Sun,
W,-W; Zhang, S.-J.; Cao, P.; Dong, X.-P.; Qin, H.-B.; Liu, J.-K.;
Wu, B. Asian J. Org. Chem. 2016, 5, 608-612. (c) Stauffer, S. R
WO2008036316 (A2), US, 2008.
6. For pioneering reports on isothiourea catalysis, see: a) Birman, V.
B;. and Li, X. Org. Lett. 2006, 8, 1351-1354. b) Birman, V. B.;
19. Nash, A.; Soheili, A.; Tambar, U. K. Org. Lett. 2013, 15, 4770-
4773.