plausible precursor to simpler pyrrole-imidazole alkaloids
of the phakellin family,6 and several synthesis strategies
directed toward these sponge alkaloids that were based upon
this model have come to fruition.7 In our laboratories, a
possibly biomimetic oxidative cyclization of sulfur-contain-
ing dihydrooroidin derivatives has been developed for the
construction of this phakellin-type structure, and this chem-
istry has been featured in total syntheses of the simple
pyrrole-imidazole alkaloids dibromophakellstatin, dibro-
mophakellin, and dibromoagelaspongin.7c,d,f,g The pivotal
transform in this chemistry is a Pummerer reaction, which
is utilized to transfer a unit of “oxidation” from sulfur to
the imidazole nucleus, thus activating it for nucleophilic
capture by the tethered nitrogens.8
“X+” to initiate the Pummerer cyclization cascade. Note that
for simplicity of presentation, only the vinylogous Pummerer
intermediate 4 (diazacyclopentadiene thionium ion) is il-
lustrated; the additive mechanism may be operational as
well.8 The anticipated outcome of this process is the
pentacyclic product 6, which bears a greater or lesser
resemblence to the palau’amine skeleton, depending upon
the exact nature/stereochemistry of the appended ring.
The initial foray into this chemistry involved the synthesis
of a Pummerer cyclization substrate 2 featuring the requisite
trans cyclopentane ring in place of the dotted lines. Unfor-
tunately, all attempts at achieving this cyclization met with
failure.9 These frustrated Pummerer bicyclization attempts
led to a reevaluation of the synthesis plan, and as a result
recourse was made to an alternative and indirect strategy
for trans cyclopentane introduction. Specifically, the use of
a less torsionally demanding cyclohexene ring with trans
disposed substituents might both enable the Pummerer
chemistry and provide a handle for the later ring contraction
that ultimately is necessary to provide the requisite trans
azabicyclo[3.3.0]octane moiety of the palau’amine structure.
This hypothesis was tested by first preparing a cyclohexene
ring featuring vicinal and trans disposed imidazole and pyrrole
moieties through Diels-Alder chemistry. The dienophile for
this Diels-Alder reaction was prepared from imidazole in 4
steps as illustrated in Scheme 2. Standard functionalization
The extension of this chemistry to the more demanding
palau’amine system is illustrated in conceptual form in
Scheme 1, where now a thiophenylated dihydrooroidin
Scheme 1. Pummerer-Reaction-Based Approach to the
Pentacyclic Core of the Dibromopalau’amine Skeleton
Scheme 2
.
Synthesis of the Imidazole-Based Diels-Alder
Dienophile 10
derivative 2 bearing a third ring of undefined dimensions
(dotted line) can be activated by a sulfur-specific electrophile
(4) (a) Overman, L. E.; Rodgers, B. N.; Tellew, J. E.; Trenkle, W. C.
J. Am. Chem. Soc. 1997, 119, 7159–7160. (b) Dilley, A. S.; Romo, D. Org.
Lett. 2001, 3, 1535–1538. (c) Be´langer, G.; Hong, F.-T.; Overman, L. E.;
Rogers, B. N.; Tellew, J. E.; Trenkle, W. C. J. Org. Chem. 2002, 67, 7880–
7883. (d) Katz, J. D.; Overman, L. E. Tetrahedron 2004, 60, 9559–9568.
(e) Lovely, C. J.; Du, H.; He, Y.; Rasika Das, H. V. Org. Lett. 2004, 6,
735–738. (f) Garrido-Hernandez, H.; Nakadai, M.; Vimolratana, M.; Li,
Q.; Doundoulakis, T.; Harran, P. G. Angew. Chem., Int. Ed. 2005, 44, 765–
769. (g) Dransfield, P. J.; Dilley, A. S.; Wang, S.; Romo, D. Tetrahedron
2006, 62, 5223–5247. (h) Tan, X.; Chen, C. Angew. Chem., Int. Ed. 2006,
45, 4345–4348. (i) Lanman, B. A.; Overman, L. E. Heterocycles 2006, 70,
557–570. (j) Bultman, M. S.; Ma, J.; Gin., D. Y. Angew. Chem., Int. Ed.
2008, 47, 6821–6824. (k) Zancanella, M. A.; Romo, D. Org. Lett. 2008,
10, 3685–3688. (l) Hudon, J.; Cernak, T. A.; Ashenhurst, J. A.; Gleason,
J. L. Angew. Chem., Int. Ed. 2008, 47, 8885–8888. (m) Li, Q.; Hurley, P.;
Ding, H.; Roberts, A. G.; Akella, R.; Harran, P. G. J. Org. Chem. 2009,
74, 5909–5919.
procedures utilizing imidazole metalation chemistry10 furnished
the aldehyde 9, which was converted to the unsaturated primary
amide 10 through Emmons-Horner chemistry.
Acquisition of dienophile 10 set the stage for the key
Diels-Alder reaction,11 which proceeded smoothly with
butadiene at high temperature to afford the trans-substituted
cyclohexene-containing product 11 in moderate yield, Scheme
3. The simple butadiene adduct 11 was an adequate starting
point to test the further chemistry, and so the amide function
(5) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.;
Baran, P. S. Angew. Chem., Int. Ed. 2010, 49, 1095–1098.
(6) (a) Al-Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237–243.
(7) (a) Bu¨chi, G.; Foley, L. H. J. Am. Chem. Soc. 1982, 104, 1776–
1777. (b) Wiese, K. J.; Yakushijin, K.; Horne, D. A. Tetrahedron Lett.
2002, 43, 5135–5136. (c) Feldman, K. S.; Skoumbourdis, A. P. Org. Lett.
2005, 7, 929–931. (d) Feldman, K. S.; Skoumbourdis, A. P.; Fodor, M. D.
J. Org. Chem. 2007, 72, 8076–8086. (e) Lu, J.; Tan, X.; Chen, C. J. Am.
Chem. Soc. 2007, 129, 7768–7769. (f) Feldman, K. S.; Fodor, M. D. J. Am.
Chem. Soc. 2008, 130, 14964–14965. (g) Feldman, K. S.; Fodor, M. D. J.
Org. Chem. 2009, 74, 3449–3461.
(8) (a) Feldman, K. S. Tetrahedron 2006, 62, 5003–5034. (b) Feldman,
K. S.; Fodor, M. D.; Skoumbourdis, A. P. Synthesis 2009, 3162–3173.
(9) Li, J. M. S. Thesis, Pennsylvania State University, 2009.
(10) Vollinga, R. C.; Menge, W. M. P. B.; Timmerman, H. Recl. TraV.
Pays-Bas 1993, 112, 123–125.
(11) For a related Diels-Alder reaction of a ꢀ-imidazole unsaturated
ester, see: Kawasaki, I.; Sakaguchi, N.; Khadeer, A.; Yamashita, M.; Ohta,
S. Tetrahedron 2006, 62, 10182–10192.
Org. Lett., Vol. 12, No. 20, 2010
4533