5142
S. Fujii et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5139–5142
RXR-agonistic activity of compound 11 possessing a carboxy
group reached a plateau at 0.1 M, and 11 (EC50 = 5.28 1.23 nM)
was as potent as 1 (EC50 = 19.8 3.4 nM). Phosphonic acid 9 did not
show RXR-agonist activity up to 10 M. Tetrazole 10 (EC50 = 205
The authors are grateful to Ms. Mariko Nakayama and Mr. Kohei
Kawata for helpful discussions during the preparation of this
manuscript.
l
l
22 nM) and hydroxamic acid 12 showed RXR full-agonistic activity,
though they were less potent than 11. The reason why 10 and 12
show RXR-agonist activities may be the planarity of their acidic
moieties. On the other hand, the lower potency of 12 as compared
with 10 may reflect the acidic character: the pKa values of phenyl-
tetrazole and benzohydroxamic acid are 4.526 and 8.8,27,28 respec-
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
tively. Docking simulation of 10, 11, and 12 with RXR
a
showed
1. Svensson, S.; Ostberg, T.; Jacobsson, M.; Norstrom, C.; Stefansson, K.; HalleÂn,
D.; Johansson, I. C.; Zachrisson, K.; Jendeberg, D. O. L. EMBO J. 2003, 22, 4625.
2. de Lera, A. R.; Bourguet, W.; Altucci, L.; Gronemeyer, H. Nat. Rev. Drug Disc.
2007, 6, 811.
3. Kanda, S.; Nakashima, R.; Takahashi, K.; Tanaka, J.; Ogawa, J.; Ogata, T.; Yachi,
M.; Araki, K.; Ohsumi, J. J. Pharm. Sci. 2009, 111, 155.
4. Mitro, N.; Mak, P. A.; Vargas, L.; Godio, C.; Hampton, E.; Molteni, V.; Kreusch, A.;
Saez, E. Nature 2007, 445, 219.
5. Schultz, J. R.; Tu, H.; Luk, A.; Repa, J. J.; Medina, J. C.; Li, L.; Schwendner, S.;
Wang, S.; Thoolen, M.; Mangelsdorf, D. J.; Lustig, K. D.; Shan, B. Gene Dev. 2000,
14, 2831.
6. Ohta, K.; Kawachi, E.; Inoue, N.; Fukasawa, H.; Hashimoto, Y.; Itai, A.;
Kagechika, H. Chem. Pharm. Bull. 2000, 48, 1504.
7. Shulman, A. I.; Larson, C.; Mangelsdorf, D. J.; Ranganathan, R. Cell 2004, 116,
417.
8. Gottardis, M. M.; Bischoff, E. D.; Shirley, M. A.; Wagoner, M. A.; Lamph, W. W.;
Heyman, R. A. Cancer Res. 1996, 56, 5566.
9. Rizvi, N. A.; Marshall, J. L.; Dahut, W.; Ness, E.; Truglia, J. A.; Loewen, G.; Gill, G.
M.; Ulm, E. H.; Geiser, R.; Jaunakais, D.; Hawkins, M. J. Clin. Cancer Res. 1999, 5,
1658.
that 10 and 12 do not hydrogen bond to Ala327 of RXR
11 does form a hydrogen bond (Fig. 3 and 4(B)).
Although there are differences of RXR-agonistic activities be-
tween 10, 11, and 12, these compounds showed similar permissive
RXR- heterodimer activation behavior. Transactivation assay with
a, whereas
PPAR
vated, PPAR
ing that the latter activity is based on permissive activation by 10,
11, and 12. Maximum PPAR /RXR transactivations of 10, 11, and
c
and PPAR
c
/RXRa showed that while PPARc was not acti-
c
/RXRa was activated by all of the compounds, indicat-
c
a
12 amounted to about 40%, 60%, and 20% of the positive control,
respectively.
On the other hand, LXR
12, indicating that their common 5,5,8,8-tetramethyl-5,6,7,8-tetra-
hydronaphthyl moiety possesses LXR activity. Maximum LXR
RXR heterodimer activation by 10 and 11 was about 60% and that
by 12 was about 50% of the positive control. Since each compound
also weakly activates LXR , LXR /RXR heterodimer activation by
a was weakly activated by 10, 11, and
a
a/
a
10. Cohen, M. H.; Hirschfeld, S.; Honig, S. F.; Ibrahim, A.; Johnson, J. R.; O’Leary, J. J.;
White, R. M.; Williams, G. A.; Pazdur, R. Oncologist 2001, 6, 4.
11. Pinaire, J. A.; Reifel-Miller, A. PPAR Res. 2007, 94156, 12.
12. Davies, P. J. A.; Berry, S. A.; Shipley, G. L.; Eckel, R. H.; Hennuyer, N.; Crombie, D.
L.; Ogilvie, K. M.; Peinado-Onsurbe, J.; Fievet, C.; Leibowitz, M. D.; Heyman, R.
A.; Auwerx, J. Mol. Pharmacol. 2001, 59, 170.
a
a
a
these compounds may be based on both RXR permissive activation
and synergistic activation.
The carboxy derivative 11 was the most potent among the com-
pounds examined. At a concentration of more than 1 lM, at which
all the compounds showed more than 80% activation of RXR, the
order of activity of the compounds was 11 > 10 > 12 for both
PPARc/RXRa and LXRa/RXRa, indicating that the acidic moiety
has little influence on RXR permissive heterodimer activation.
c Log P values30 of 11 and 10 are 5.55 1.07 and 5.06 0.85,
respectively. Although the tetrazole derivative 10 is less potent
than 11, tetrazolyl-type RXR agonists seem to be attractive candi-
date agents from the viewpoint of bioavailability.
RXR agonists possessing tetrazole, hydroxamic acid, and phos-
phonic acid as the acidic domain were prepared from a common
bromo intermediate. Evaluation of their RXR agonistic activity
13. Li, X.; Hansen, P. A.; Xi, L.; Chandraratna, R. A. S.; Burant, C. F. J. Biol. Chem. 2005,
46, 38317.
14. Liu, S.; Ogilvie, K. M.; Klausing, K.; Lawson, M. A.; Jolley, D.; Li, D.; Bilakovics, J.;
Pascual, B.; Hein, N.; Urcan, M.; Leibowitz, M. D. Endocrinology 2002, 143, 2880.
15. Yoshikawa, T.; Shimano, H.; Amemiya-Kudo, M.; Yahagi, N.; Hasty, A. H.;
Matsuzaka, T.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Osuga, J.; Harada,
K.; Gotoda, T.; Kimura, S.; Ishibashi, S.; Yamada, N. Mol. Cell Biol. 2001, 21, 2991.
16. Nishimaki-Mogami, T.; Tamehiro, N.; Sato, Y.; Okuhira, K.; Sai, K.; Kagechika,
H.; Shudo, K.; Abe-Dohmae, S.; Yokoyama, S.; Ohno, Y.; Inoue, K.; Sawada, J.
Biochem. Pharmacol. 2008, 76, 1006.
17. Charton, J.; Deprez-Poulain, R.; Hennuyer, N.; Tailleux, A.; Staels, B.; Deprez, B.
Bioorg. Med. Chem. Lett. 2009, 19, 489.
18. Ebisawa, M.; Ohta, K.; Kawachi, E.; Fukasawa, H.; Hashimoto, Y.; Kagechika, H.
Chem. Pharm. Bull. 2001, 49, 501.
19. Takamatsu, K.; Takano, A.; Yakushiji, N.; Morohashi, K.; Morishita, K.;
Matsuura, N.; Makishima, M.; Tai, A.; Sasaki, K.; Kakuta, H. ChemMedChem
2008, 3, 780.
20. Ebisawa, M.; Kawachi, E.; Fukasawa, H.; Hashimoto, Y.; Itai, A.; Shudo, K.;
Kagechika, H. Biol. Pharm. Bull. 1998, 21, 547.
21. Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Himi, T.; Shudo, K. J. Med. Chem.
1988, 31, 2182.
22. Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637.
23. Belabassi, Y.; Alzghari, S.; Montchamp, J. L. J. Organomet. Chem. 2008, 693, 3171.
24. Mal, P.; Lourderaj, U.; Parveen; Venugopalan, P.; Moorthy, J. N.; Sathyamurthy,
N. J. Org. Chem. 2003, 68, 3446.
and RXR- heterodimer activation activities toward PPAR
c/RXR
and LXR /RXR indicated that modification of the acidic domain
a
of RXR agonists has little influence on permissive RXR-heterodimer
activation. This information may be useful for the creation of RXR
agonists with superior bioavailability.
Acknowledgments
25. Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149.
26. Franz, R. G. AAPS PharmSci. 2001, 3, 1.
The authors are grateful to the staff of the SC-NMR Laboratory
of Okayama University for performing the NMR experiments. The
authors are also grateful to Professor Miyachi for presenting
TIPP-703 and carba-T0901317. This work was partially supported
by a Grant-in-Aid for Scientific Research on Priority Areas from
the Ministry of Education, Science, Culture and Sports of Japan.
27. Brink, C. P.; Crumbliss, A. L. J. Org. Chem. 1982, 47, 1171.
28. Brink, C. P.; Fish, L.; Crumbliss, A. L. J. Org. Chem. 1985, 50, 2277.
29. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D.
S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.