Arumugam and Popik
JOCArticle
o-QMs can be efficiently generated by photodehydration
of o-hydroxybenzyl alcohol derivatives.2a,4a-c The enhanced
acidity of phenols in the excited state facilitates intramole-
cular proton transfer (ESIPT)7 of the phenolic proton to the
oxygen atom in benzylic position.4a-c C-O bond heterolysis
can be concerted with ESIPT or the loss of water might occur
in the ground state after proton transfer is complete.8 In
either case, the formation of o-QMs is usually complete
within a nanosecond pulse.4a-c o-QMs also can be generated
by photochemical elimination of ammonia or amines from
o-hydroxybenzylamines.9
The major reaction of o-QMs in aqueous solutions is rapid
addition of water producing o-hydroxybenzyl alcohol deriva-
tives. Efficacy enhancement of o-QM-based antitumor agents,1
as well as development of o-hydroxybenzyl photolabile protect-
ing groups,10 requires a better understanding of o-QM behavior
in this medium. However, only kinetics of hydration of the
parent o-QM, 6-methylene-2,4-cyclohexadien-1-one, has been
investigated in detail.4b-d Little is known about the influence of
the electronic properties of substituents on the reactivity of
oQMs.4a,5d,11 Our recent studies of o-naphthoquinone methides
have demonstrated that the presence of an additional electron-
rich aromatic ring causes dramatic changes in the mechanism of
formation and reactivity of o-QM.11 These results prompted us
to investigate the effect of electron-donating substituents on the
dynamics of o-quinone methide hydration. In the present report
we discuss the photochemical generation and reactivity of
electron-rich o-quinone methides 1 and 2 (Scheme 1).
FIGURE 1. UV spectra of ca. 10-5 M aqueous solutions of 3a
(solid line) and 4a (dashed line).
SCHEME 1
FIGURE 2. Emission spectra at λex = 266 nm of ca. 10-5
aqueous solutions of 3a (dashed line) and 4a (solid line).
M
from (2,5-dihydroxy-1-phenyl)methyl- (3c) and (2-hydroxy-5-
methoxy-1-phenyl)methyltrimethylammonium iodides (4c).12
The formation and reactions of o-QMs in aqueous solutions
were monitored with a nanosecond kinetic spectrometer
equipped with pulsed Nd:YAG laser.12 The product analysis
of photochemical reactions of 3a-c and 4a-c was conducted by
HPLC, using individual compounds isolated from preparative
scale photolyses as references.
Results and Discussion
o-QMs 1 and 2 are conveniently generated by the photolysis
of 2-(hydroxymethyl)benzene-1,4-diol (3a) and 2-(hydroxy-
methyl)-4-methoxyphenol (4a); 2-(ethoxymethyl) benzene-1,4-
diol (3b) and 2-(ethoxymethyl)-4-methoxyphenol (4b);aswellas
Photophysical Properties and Photochemical Reactivity of
o-QM Precursors. UV spectra of 2-(hydroxymethyl)ben-
zene-1,4-diol (3a) and 2-(hydroxymethyl)-4-methoxyphenol
(4a) are very similar (Figure 1) and red-shifted by 25-30 nm
compared to the spectrum of o-hydroxybenzyl alcohol.13 A
major absorption band of 3a lies at 295 nm (log ε = 3.91) and
of 4a at 300 nm (log ε = 3.97). Both o-QM precursors are
fluorescent showing emission band with λmax at 333 (3a) and
336 nm (4a) (Figure 2). The quantum yield of fluorescence is
(5) (a) Wang, P.; Song, Y.; Zhang, L. X.; He, H. P.; Zhou, X. Curr. Med.
Chem. 2005, 12, 2893. (b) Freccero, M.; Di Valentin, C.; Sarzi-Amade, M.
J. Am. Chem. Soc. 2003, 125, 3544. (c) Weng, X.; Ren, L.; Weng, L.; Huang,
J.; Zhu, S.; Zhou, X.; Weng, L. Angew. Chem., Int. Ed. 2007, 46, 8020. (d)
Weinert, E. E.; Dondi, R.; Colloredo-Melz, S.; Frankenfield, K. N.; Mitchell,
C. H.; Freccero, M.; Rokita, S. E. J. Am. Chem. Soc. 2006, 128, 11940. (e)
Wang, P.; Liu, R.; Wu, X.; Ma, H.; Cao, X.; Zhou, P.; Zhang, J.; Weng, X.;
Zhang, X.-L.; Qi, J.; Zhou, X.; Weng, L. J. Am. Chem. Soc. 2003, 125, 1116.
(f) Richter, S. N.; Maggi, S.; Mels, S. C.; Palumbo, M.; Freccero, M. J. Am.
Chem. Soc. 2004, 126, 13973. (g) Colloredo-Mels, S.; Doria, F.; Verga, D.;
Freccero, M. J. Org. Chem. 2006, 71, 3889.
(6) (a) Han, I.; Russell, D. J.; Kohn, H. J. Org. Chem. 1992, 57, 1799. Li,
V.-S.; Kohn, H. J. Am. Chem. Soc. 1991, 113, 275. (b) Tomasz, M.; Das, A.;
Tang, K. S.; Ford, M. G. J.; Minnock, A.; Musser, S.; Waring, M. J. J. Am.
Chem. Soc. 1998, 120, 11581. (c) Egholm, M.; Koch, T. H. J. Am. Chem. Soc.
1989, 111, 8291. (d) Gaudiano, G.; Frigerio, M.; Bravo, P.; Koch, T. H. J. Am.
Chem. Soc. 1990, 112, 6704.
(7) (a) Lahiri, S. C. J. Sci. Ind. Res. 1979, 38, 492. Van der Donckt, E. Prog.
React. Kinet. 1970,5, 273. (b) Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem.
1976, 12, 131. (c) Shizuka, H.; Tobita, S. Mol. Supramol. Photochem. 2006, 14, 37.
(d) Tolbert, L. M.; Solntsev, K. M. Acc. Chem. Res. 2002, 35, 19.
(8) (a) Wan, P.; Barker, B.; Diao, L.; Fischer, M.; Shi, Y.; Yang, C. Can. J.
Chem. 1995, 74, 465. (b) Yijian, S.; Wan, P. Can. J. Chem. 2005, 83, 1306.
(9) Nakatani, K.; Higashida, N.; Saito, I. Tetrahedron Lett. 1997, 38, 5005.
(10) (a) Kostikov, A.; Popik, V. V. Org. Lett. 2008, 10, 5277. (b)
Kostikov, A.; Popik, V. V. J. Org. Chem. 2007, 72, 9190.
higher for 2-(hydroxymethyl)-4-methoxyphenol (4a, ΦFl
=
0.16 ( 0.01) than for 3a (ΦFl = 0.050 ( 0.002).12,14 This
emission hinders monitoring of laser flash-induced transfor-
mation of 3a and 4a at shorter wavelengths, but the intensity
of fluorescence dies off above 400 nm and thereby allows us
(12) See the Supporting Information.
(13) Kammerer, B.; Kahlich, R.; Biegert, C.; Gleiter, C. H.; Heide, L.
Phytochem. Anal. 2005, 16, 470–478.
(14) (a) Wang, Y.-H.; Zhang, H.-M.; Liu, L.; Liang, Z.-H.; Guo, O.-X.;
Tung, C.-H.; Inoue, Y.; Liu, Y.-C. J. Org. Chem. 2002, 67, 2429. (b) Berlman,
I. B. Handbook of Fluorescence Spectra of Aromatic Molecules; Academic
Press: New York, 1971; p 473.
(11) Arumugam, S.; Popik., V. V. J. Am. Chem. Soc. 2009, 131, 11892.
J. Org. Chem. Vol. 75, No. 21, 2010 7339