7 P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov,
Adv. Mater., 2007, 19, 1551.
electron current through the LUMO level of PCBM by sub-
tracting the total reverse current from the forward bias current,
i.e. Je ¼ Jf ꢁ Jh ¼ Jf ꢁ Jr ¼ Jf-r. The variation of Jf-r with Va ꢁ Vbi
is shown in Fig. 8b for both the as cast and contact annealed
devices. It can be seen from these curves that at sufficiently high
forward bias voltages, both devices show J–V behaviour
consistent with space charge limited electron conduction through
PCBM in trap filled limit i.e. Jf-r ꢂ (Va ꢁ Vbi)2. The J–V char-
acteristics can be described by a SCLC model including a field
dependent mobility m(E).39
8 G.Dennler,M.C.ScharberandC.J.Brabec,Adv.Mater.,2009,21,1323.
9 S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz
and J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
10 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger
and G. C. Bazan, Nat. Mater., 2007, 6, 497.
11 G. Li, V. Shrotriya, Y. Yao, J. Huang and Y. Yang, J. Mater. Chem.,
2007, 17, 3126.
12 W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct.
Mater., 2005, 15, 1617.
13 (a) D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller,
R. Gaudiana and C. Brabec, Adv. Mater., 2006, 18, 2884; (b) J. Peet,
J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and
G. C. Bazan, Nat. Mater., 2007, 6, 497; (c) E. G. Wang, L. Wang,
L. F. Lan, C. Luo, W. L. Zhuang, J. B. Peng and Y. Cao, Appl.
Phys. Lett., 2008, 92, 33307; (d) J. H. Hou, H. Y. Chen,
S. Q. Zhang, G. Li and Y. Yang, J. Am. Chem. Soc., 2008, 130,
16144; (e) Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray and
L. Yu, J. Am. Chem. Soc., 2009, 131, 7792.
14 (a) F. C. Krebs, Energy Environ. Sci., 2010, 3, 512; (b) F. C. Krebs,
M. Jorgensen, K. Norman, O. Hagemann, J. Alstrup,
T. D. Nielsen, J. Fyenbo, K. Larsen and J. Kristensen, Sol. Energy
Mater. Sol. Cells, 2009, 93, 422; (c) F. C. Krebs, S. A. Gevorgyan,
B. Gholamkhass, S. Holdcroft, C. Schlenker, M. E. Thompson,
B. C. Thompson, D. Olson, D. S. Ginley and S. E. Shaheen, et al.,
Sol. Energy Mater. Sol. Cells, 2009, 93, 1968; (d) F. C. Krebs,
S. A. Gevorgyan and J. Alstrup, J. Mater. Chem., 2009, 19, 5442.
15 (a) M. Helgesen, R. Sondergaard and F. C. Krebs, J. Mater. Chem.,
2010, 20, 36; (b) B. Kippelen and J.-L. Bredas, Energy Environ. Sci.,
2009, 2, 251; (c) F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009,
93, 394.
9
V2
d3
J ¼ 303rmðEÞ
(3a)
8
where m(E) is given by
!
rffiffiffiffi
V
mðEÞ ¼ mð0Þexp 0:891g
(3b)
d
where g is the field activation factor and m(0) is the zero field
mobility. The analysis of J–V characteristics is shown in Fig. 8b
and eqn 3a and 3b. We have estimated the values of electron
mobility, which are 3.2 ꢃ 10ꢁ4 cm2 Vꢁ1 sꢁ1 and 4.3 ꢃ 10ꢁ4 cm2 Vꢁ1
sꢁ1 for the as cast and contact annealed device, respectively.
Comparing the electron and hole mobility for the as cast and
contact blend device, it is found that the difference in the electron
and hole mobility is about 28 and 6.5, respectively. This decrease
in the difference causes the reduction of recombination in the
contact annealed device and leads to an improvement in the PCE
of the PV device.
16 C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz,
M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Funct. Mater.,
2001, 11, 374.
17 H. Rau and B. Bunsenges, Physikalische Chemie, 1968, 72, 637.
18 R. B. Champ and M. D. Shattuck, US Patent, 3898084, 1975.
19 K. Y. Law, Chem. Rev., 1993, 93, 449.
20 D. Liu, M. Mudadu, R. Thummel, Y. Tao and S. Wang, Adv. Funct.
Mater., 2005, 15, 143.
Conclusions
21 B. Domercq, C. Grasso, J. L. Maldonado, M. Halik, S. Barlow,
S. R. Marder and B. Kippelen, J. Phys. Chem. B, 2004, 108, 8647.
22 Y. Sun, D. Rohde, Y. Liu, L. Wan, Y. Wang, W. Wu, C. Di, G. Yu
and D. Zhu, J. Mater. Chem., 2006, 16, 4499.
23 D. Kumaresan, R. P. Thummel, T. Bura, G. Ulrich and R. Ziessel,
Chem.–Eur. J., 2009, 15, 6335.
24 Y. Li, O. Brian Patrick and D. Dolphin, J. Org. Chem., 2009, 74, 5237.
25 J. A. Mikroyannidis, G. D. Sharma, S. S. Sharma and Y. K. Vijay,
J. Phys. Chem. C, 2010, 114, 1520.
26 J. A. Mikroyannidis, M. S. Roy and G. D. Sharma, J. Power Sources,
2010, 195, 5391.
A symmetrical bisazopyrrole (A) and the corresponding BF2–
azopyrrole complex (B) were successfully synthesized and used
for BHJ solar cells. Compounds A and B were soluble in
common organic solvents, but B was stable only in nonprotic
solvents. The thin film absorption spectrum of B was broader
and showed lower band gap (1.49 eV) than that (1.54 eV) of A.
The HOMO and LUMO levels of both compounds A and B are
found suitable for the BHJ photoactive layer. We have shown
that
a
suitable post-device-fabrication thermal treatment
27 S. Kim, A. Oehlhof, B. Beile and H. Meier, Helv. Chim. Acta, 2009,
92, 1023.
(contact annealed) results in high performance A:PCBM or
B:PCBM blend BHJ solar cells. The PCE values are 2.70% and
3.15% for the devices based on the A:PCBM and B:PCBM blend,
respectively. We found that the improved PCE for the contact
annealed device results from the improved balanced charge
transport, due to the enhanced hole mobility.
28 M.J.Jeong,J.H.Park,C.LeeandJ.Y.Chang,Org.Lett.,2006,8,2221.
29 L. J. Bellamy, The infra-red spectra of complex molecules, Chapman
and Hall, (London), John Wiley & Sons (New York), 1975, p 304.
30 Q. J. Sun, H. Q. Wang, C. H. Yang and Y. F. Li, J. Mater. Chem.,
2003, 13, 800.
31 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarity, K. Emery and
Y. Yang, Nat. Mater., 2005, 4, 864.
32 G. G. Malliaras, J. R. Salem, P. J. Brock and C. Scott, Phys. Rev. B:
Condens. Matter Mater. Phys., 1998, 58, R13411.
33 D. Chirvase, Z. Chiguvane, M. Knipper, J. Parisi, V. Dyakonov and
J. C. Hummelen, J. Appl. Phys., 2003, 93, 3376.
References
34 V. Shrotriya, Y. Yao, G. Li and Y. Yang, Appl. Phys. Lett., 2006, 89,
063505.
35 V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster and
P. W. M. Blom, Adv. Funct. Mater., 2006, 16, 699.
36 V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and
M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
37 S. C. Veenstra, A. Heeres, G. Hadziioannou, G. A. Sawatzky and
H. T. Jonkman, Appl. Phys. A: Mater. Sci. Process., 2002, 75, 661.
38 M. A. Lampert and P. Mark, Current Injection in Solids, Academic,
New York, 1970.
1 C. J. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, in Organic
Photovoltaics: Concepts and Realization, Springer, Heidelberg, 2003.
2 C. J. Brabec, Sol. Energy Mater. Sol. Cells, 2004, 83, 273.
3 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science,
1995, 270, 1789.
4 F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater.,
2003, 13, 85.
5 J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater., 2005,
17, 66.
6 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and
Y. Yang, Nat. Mater., 2005, 4, 864.
39 P. N. Murgatroyd, J. Phys. D: Appl. Phys., 1970, 3, 151.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 6464–6471 | 6471