10.1002/adsc.202001006
Advanced Synthesis & Catalysis
radical A in the presence of AgNO2/K2S2O8/O2. The
radical A was trapped by selenium powder to yield
McCarthy-Ward, J. Shaw, D.-H. Lim, Y.-J. Kim, S.
Mathur, M. Heeney, D.-Y. Kim, Adv. Sci. 2019, 6,
1900245-1900251.
selenium-centred
radical
B,
followed
by
intramolecular radical cyclization/oxidation to
provide the final product 2a. Alternatively, the in-situ
generated B either undergoes homocoupling to give 7
in a reversible way, or reacts with radical A to furnish
8.
[2] R. Lisiak, J. Mochowski, Synth. Commun. 2009, 39,
4271-4281.
[3] a) T. Yamamoto, K. Takimiya, J. Am. Chem. Soc. 2007,
129, 2224-2225; b) H. Ebata, E. Miyazaki, T.
Yamamoto, K. Takimiya, Org. Lett. 2007, 9, 4499-
4502; c) T. Izawa, E. Miyazaki, K. Takimiya, Adv.
Mater. 2008, 20, 3388-3392; d) K. Niimi, S. Shinamura,
I. Osaka, E. Miyazaki, K. Takimiya, J. Am. Chem. Soc.
2011, 133, 8732-8739; e) T. Mori, T. Nishimura, T.
Yamamoto, I. Doi, E. Miyazaki, I. Osaka, K. Takimiya,
J. Am. Chem. Soc. 2013, 135, 13900-13913.
In conclusion, we have developed an Ag-catalyzed
C-Se bond-forming strategy, providing an efficient
method for the synthesis of selenaheterocycles
including
benzo[b]selenophene,
dibenzo[b]selenophenes and phenoxaselenines. The
studies on the substrate scope showed a significant
influence on the nature of the electron-rich group of
arylboronic acids. We also demonstrated key
mechanistic features of this C-Se bond-forming
reaction by control experiments.
[4] M. K. Staples, R. L. Grange, J. A. Angus, J. Ziogas, N.
P. H. Tan, M. K. Taylor, C. H. Schiesser, Org. Biomol.
Chem. 2011, 9, 473-479.
[5] T. Kashiki, S. Shinamura, M. Kohara, E. Miyazaki, K.
Takimiya, M. Ikeda, H. Kuwabara, Org. Lett. 2009, 11,
2473-2475.
Experimental Section
[6] E. Paegle, S. Belyakov, P. Arsenyan, Eur. J. Org.
Chem. 2014, 3831-3840.
Typical procedure for the synthesis of selenaheterocycles.
A 10 mL Schlenk tube equipped with a stir bar was
charged with arylboronic acid (0.2 mmol), Se (0.4 mmol),
AgNO2 (10 mol %) and K2S2O8 (0.3 mmol). Then dioxane
(2 mL) was added in the Schlenk tube through the rubber
septum using syringes. The reaction mixture was stirred in
a heating mantle preheated to 130 °C for 24 h. After
cooling down, the reaction mixture was diluted with 10 mL
of ethyl ether, filtered through a pad of silica gel and
concentrated under reduced pressure. The residue was then
purified by flash chromatography on silica gel to provide
the corresponding product.
[7] J. E. Lyons, C. H. Schiesser, K. Sutej, J. Org. Chem.
1993, 58, 5632-5638.
[8] P. Maity, B. Paroi, B. C. Ranu, Org. Lett. 2017, 19,
5748-5751.
[9] B. Wu, N. Yoshikai, Angew. Chem., Int. Ed. 2013, 52,
10496-10499.
[10] a) J. D. McCullough, T. W. Campbell, E. S. Gould, J.
Am. Chem. Soc. 1950, 72, 5753-5754; b) K. Nishino, Y.
Ogiwara, N. Sakai, Eur. J. Org. Chem. 2017, 5892-
5895; c) P. Franzmann, S. B. Beil, D. Schollmeyer, S.
R. Waldvogel, Chem. Eur. J. 2019, 25, 1936-1940; d)
K. Nishino, Y. Ogiwara, N. Sakai, Chem. Eur. J. 2018,
24, 10971-10974.
Acknowledgements
We are grateful for financial support from the National Natural
Science Foundation of China (21901187, 21372177 and
21672164).
[11] a) A. Daft, L. E. Christiaens, M. J. Renson, Acta
Chem. Scand, 1993, 47, 208-211; b) M. Tobisu, Y.
Masuya, K. Babaa, N. Chatani, Chem. Sci. 2016, 7,
2587-2591.
References
[1] a) S. T. Manjare, Y. Kim, D. G. Churchill, Acc. Chem.
Res. 2014, 47, 2985-2998; b) T. G. Back, Z. Moussa, J.
Am. Chem. Soc. 2003, 125, 13455-13460; c) L. Shao, Y.
Li, J.-M. Lu, X. Jiang, Org. Chem. Front. 2019, 6,
2999-3041; d) L. Liao, R. Guo, X. Zhao. Angew .Chem.,
Int. Ed. 2017, 56, 3201-3205; e) R. Guo, J. Huang, X.
Zhao, ACS Catal. 2018, 8, 926-930; f) X. Liu, Y. Liang,
J. Ji, J. Luo, X. Zhao. J. Am. Chem. Soc. 2018, 140,
4782-4786; g) H. Azuma, S. Tamagaki, K. Ogino, J.
Org. Chem. 2000, 65, 3538-3541; h) E. M. Treadwell, J.
D. Neighbors, D. F. Wiemer, Org. Lett. 2002, 4, 3639-
3642; i) K. B. Sharpless, R. F. Lauer, J. Am. Chem. Soc.
1973, 95, 2697-2699; j) T. Hori, K. B. Sharpless, J.
Org. Chem. 1978, 43, 1689-1697; k) M. Gruttadauria,
C. Aprile, S. Riela, R. Noto, Tetrahedron Lett. 2001, 42,
2213-2215; l) T. S. Chisholm, S. S. Kulkarni, K. R.
Hossain, F. Cornelius, R. J. Clarke, R. J. Payne, J. Am.
Chem. Soc. 2020, 142, 1090-1100; m) H. Xu, W. Cao,
X. Zhang, Acc. Chem. Res. 2013, 46, 1647-1658; n) S.-
Y. Jang, I.-B. Kim, M. Kang, Z. Fei, E. Jung, T.
[12] a) T. Okamoto, M. Mitani, C. P. Yu, C. Mitsui, M.
Yamagishi, H. Ishii, G. Watanabe, S. Kumagai, D.
Hashizume, S. Tanaka, M. Yano, T. Kushida, H. Sato,
K. Sugimoto, T. Kato, J. Takeya. J. Am. Chem. Soc.
2020, 10.1021/jacs.0c05522; b) Wenguang Li, Genhua
Xiao, Guobo Deng and Yun Liang. Org. Chem. Front.
2018, 5, 1488-1492.
[13] M. Wang, Q. Fan, X. Jiang, Org. Lett. 2016, 18, 5756-
5759.
[14] C. An, C.-Y. Li, X.-B. Huang, W.-X. Gao, Y.-B. Zhou,
M.-C. Liu, H.-Y. Wu, Org. Lett. 2019, 21, 6710-6714.
[15] Y.-F. Yang, C.-Y. Li, T. Leng, X.-B. Huang, W.-X.
Gao, Y.-B. Zhou, M.-C. Liu, H.-Y. Wu, Adv. Synth.
Catal. 2020, 362, 2168-2172.
4
This article is protected by copyright. All rights reserved.