M. Bietti et al. / Tetrahedron Letters 51 (2010) 4129–4131
4131
6. See for example: (a) Bietti, M.; Lanzalunga, O.; Salamone, M. J. Org. Chem. 2005,
70, 1417–1422; (b) Nakamura, T.; Watanabe, Y.; Suyama, S.; Tezuka, H. J. Chem.
Soc., Perkin Trans. 2 2002, 1364–1369; (c) Newcomb, M.; Daublain, P.; Horner, J.
H. J. Org. Chem. 2002, 67, 8669–8671; (d) Wilsey, S.; Dowd, P.; Houk, K. N. J. Org.
Chem. 1999, 64, 8801–8811; (e) Tsentalovich, Y. P.; Kulik, L. V.; Gritsan, N. P.;
Yurkovskaya, A. V. J. Phys. Chem. A 1998, 102, 7975–7980; (f) Avila, D. V.;
Brown, C. E.; Ingold, K. U.; Lusztyk, J. J. Am. Chem. Soc. 1993, 115, 466–470; (g)
Banks, J. T.; Scaiano, J. C. J. Am. Chem. Soc. 1993, 115, 6409–6413.
7. See for example: Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649–9667. and
references therein.
8. See for example: (a) Kawashima, T.; Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. B
2010, 114, 675–680; (b) Cosa, G.; Scaiano, J. C. Org. Biomol. Chem. 2008, 6, 4609–
4614; (c) Koner, A. L.; Pischel, U.; Nau, W. N. Org. Lett. 2007, 9, 2899–2902; (d)
Correia, C. F.; Borges dos Santos, R. M.; Estácio, S. G.; Telo, J. P.; Costa Cabral, B.
J.; Martinho Simões, J. A. Chem. Phys. Chem. 2004, 5, 1217–1221; (e) Finn, M.;
Friedline, R.; Suleman, N. K.; Wohl, C. J.; Tanko, J. M. J. Am. Chem. Soc. 2004, 126,
7578–7584; (f) Snelgrove, D. W.; Lusztyk, J.; Banks, J. T.; Mulder, P.; Ingold, K. U.
J. Am. Chem. Soc. 2001, 123, 469–477; (g) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.;
Valgimigli, L.; Gigmes, D.; Tordo, P. J. Am. Chem. Soc. 1999, 121, 11546–11553;
(h) Weber, M.; Fischer, H. J. Am. Chem. Soc. 1999, 121, 7381–7388.
9. See for example: (a) Nunes, P. M.; Estácio, S. G.; Lopes, G. T.; Agapito, F.; Santos,
R. C.; Costa Cabral, B. J.; Borges dos Santos, R. M.; Martinho Simões, J. A. J. Phys.
Chem. A 2009, 113, 6524–6530; (b) Hartung, J.; Schneiders, N.; Gottwald, T.
Tetrahedron Lett. 2007, 48, 6027–6030; (c) Sato, E.; Zetterlund, P. B.; Yamada, B.;
Busfield, W. K.; Jenkins, I. D. Macromol. Chem. Phys. 2003, 204, 1882–1888; (d)
Nakamura, T.; Busfield, W. K.; Jenkins, I. D.; Rizzardo, E.; Thang, S. H.; Suyama,
S. J. Org. Chem. 1997, 62, 5578–5582.
The failure to observe the product deriving from O-neophyl shift
in 3ꢀ (cyclopropyl 4-(2,2-diphenylcyclopropyl)phenyl ketone (D))
indicates that in the presence of two phenyl substituents on the
cyclopropyl group, 4ꢀ undergoes cyclopropyl ring-opening (path
b) significantly faster than the opening of the oxirane ring (path
e). This is in line with the estimated rate constants for the two pro-
cesses, as it can be reasonably assumed that cyclopropyl ring-
opening occurs with the same rate in 4ꢀ and 2ꢀ (for which a value
of k ꢀ 7:5 ꢁ 108 sꢂ1 has been estimated),19 whereas that rate con-
stants for O-neophyl shift in 1,1-diarylalkoxyl radicals bearing
electron-releasing ring substituents have been shown to be
62.4 ꢁ 106 sꢂ1 14b
,
and a similar (or lower) value can be reasonably
predicted also for 3ꢀ.
In conclusion, by means of a detailed product study, convincing
experimental evidence in support of an equilibrium between 1,1-
diarylalkoxyl radical 3ꢀ and an 1-oxaspiro[2,5]octadienyl radical
has been obtained, in agreement with previous computational re-
sults. The existence of this equilibrium appears to be a general fea-
ture of arylcarbinyloxyl radicals, strongly supporting the
hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl
radicals proceeds through the formation of a bridged 1-oxaspi-
ro[2,5]octadienyl radical intermediate.
10. See for example: Ding, B.; Bentrude, W. G. J. Am. Chem. Soc. 2003, 125, 3248–
3259. and references therein.
11. Griller, D.; Ingold, K. U.; Patterson, L. K.; Scaiano, J. C.; Small, R. D., Jr. J. Am.
Chem. Soc. 1979, 101, 3780–3785.
12. Wieland, H. Chem. Ber. 1911, 44, 2550–2556.
Acknowledgment
13. Ingold, K. U.; Smeu, M.; DiLabio, G. A. J. Org. Chem. 2006, 71, 9906–9908.
14. (a) Bietti, M.; Salamone, M. J. Org. Chem. 2005, 70, 10603–10606; (b) Aureliano
Antunes, C. S.; Bietti, M.; Ercolani, G.; Lanzalunga, O.; Salamone, M. J. Org. Chem.
2005, 70, 3884–3891.
Financial support from the Ministero dell’Istruzione dell’Uni-
versità e della Ricerca (MIUR) is gratefully acknowledged.
15. Banks, J. T.; Scaiano, J. C. J. Phys. Chem. 1995, 99, 3527–3531.
16. Falvey, D. E.; Khambatta, B. S.; Schuster, G. B. J. Phys. Chem. 1990, 94, 1056–
1059.
Supplementary data
17. Bietti, M.; Ercolani, G.; Salamone, M. J. Org. Chem. 2007, 72, 4515–4519.
18. Smeu, M.; DiLabio, G. A. J. Org. Chem. 2007, 72, 4520–4523.
19. Salamone, M.; Bietti, M.; Calcagni, A.; Gente, G. Org. Lett. 2009, 11, 2453–2456.
20. Baciocchi, E.; Bietti, M.; Salamone, M.; Steenken, S. J. Org. Chem. 2002, 67,
2266–2270.
Supplementary data (details on product studies, synthesis of
substrate 3 and characterization of product C) associated with this
article can be found, in the online version, at doi:10.1016/
21. Neville, A. G.; Brown, C. E.; Rayner, D. M.; Ingold, K. U.; Lusztyk, J. J. Am. Chem.
Soc. 1989, 111, 9269–9270.
22. The rate constant for the 2,2-diphenylcyclopropylcarbinyl?1,1-diphenyl-3-
References and notes
butenyl radical rearrangement has been determined as k = 5 ꢁ 1011 sꢂ1 23
.
A
rate constant k ꢀ 7:5 ꢁ 108 sꢂ1 has been instead estimated for the analogous
rearrangement in 2ꢀ.19 This value is about three orders of magnitude higher
than the rate constants measured (in MeCN) for C–CH3 b-scission of cumyloxyl
radicals.6g,20,21
1. Orlando, J. J.; Tyndall, G. S.; Wallington, T. J. Chem. Rev. 2003, 103, 4657–4689.
2. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 4th ed.;
Oxford University Press: Oxford, 2007.
3. See for example: (a) Chaturvedi, D.; Goswami, A.; Saikia, P. P.; Barua, N. C.; Rao,
P. G. Chem. Soc. Rev. 2010, 39, 435–454; (b) Robert, A.; Bonduelle, C.; Laurent, S.
A.-L.; Meunier, B. J. Phys. Org. Chem. 2006, 19, 562–569; (c) Posner, G. H.;
O’Neill, P. M. Acc. Chem. Res. 2004, 37, 397–404.
23. Newcomb, M.; Johnson, C. C.; Manek, M. B.; Varick, T. R. J. Am. Chem. Soc. 1992,
114, 10915–10921.
24. Full details on the synthesis of 3 are given in the Supplementary data.
25. Suárez, E.; Rodriguez, M. S.. In Radicals in Organic Synthesis; Renaud, P., Sibi, M.
P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, pp 440–454.
26. Courtneidge, J. L.; Lusztyk, J.; Pagè, D. Tetrahedron Lett. 1994, 35, 1003–1006.
27. When employing the DIB/I2 system carbon radicals rapidly react with I2 to give
the corresponding alkyl iodides.14b,25 As mentioned previously,19 it is thus
4. See for example: (a) Zhu, H.; Wickenden, J. G.; Campbell, N. E.; Leung, J. C. T.;
Johnson, K. M.; Sammis, G. M. Org. Lett. 2009, 11, 2019–2022; (b) Xu, W.; Zou,
J.-P.; Mu, X.-J.; Zhang, W. Tetrahedron Lett. 2008, 49, 7311–7314; (c) Francisco,
C. G.; González, C. C.; Kennedy, A. R.; Paz, N. R.; Suárez, E. Chem. Eur. J. 2008, 14,
6704–6712.
reasonable to propose that also in this case
C is formed during workup
ˇ
5. See for example: (a) Cekovic´, Z. Tetrahedron 2003, 59, 8073–8090; (b) Horner, J.
following solvolysis of the tertiary iodide (Scheme 5, path d).
H.; Choi, S.-Y.; Newcomb, M. Org. Lett. 2000, 2, 3369–3372.