Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC03724D
COMMUNICATION
Journal Name
1
2
(a) P. Zhou, B.-C. Chen and F. A. Davis, Tetrahedron, 2004,
60, 8003; (b) F. A. Davis, J. Org. Chem., 2006, 71, 8993; (c) F.
Ferreira, C. Botuha, F. Chemla and A. Pérez-Luna, Chem. Soc.
Rev., 2009, 38, 1162; d) M. T. Robak, M. A. Herbage and J. A.
Ellman, Chem. Rev., 2010, 110, 3600.
Although Lin’s reductive cross-coupling with aldehydes is not
a radical alkyl addition, it can be considered a radical
mediated process, see: Y.-W. Zhong, Y.-Z. Dong, K. Fang, K.
On the other hand, DIPEA and N-sulfinimine
1 did not display
this quenching ability. Therefore, the mechanism should follow
an oxidative quenching pathway, starting with reduction of
phthalimide
Finally, to ensure whether this reaction is governed by a
radical chain propagation process or visible light-
2.
a
photocatalytic one, we carried out light/dark experiments,
(Figure 1).16 In addition, the radical chain mechanism seems to
be incoherent since the N-centered radical III and phthalimide
2c should both reduced.17 Predictably, we observed that
product formation (4e) only occurs during visible light
irradiation periods, indicating that radical formation is taking
Izumi, M.-H. Xu and G.-Q. Lin, J. Am. Chem. Soc., 2005, 127
11956.
,
3
4
T. Akindele, Y. Yamamoto, M. Maekawa, H. Umeki, K.-I.
Yamada and K. Tomioka, Org. Lett., 2006, , 5729.
8
a) J. A. Fernández-Salas, M. C. Maestro, M. M. Rodríguez-
Fernández, J. L. García-Ruano and I. Alonso, Org. Lett., 2013,
15, 1658. For pioneering works on intramolecular radical
additions to N-sulfinimines, see: b) E. M. Rochette, W. Lewis,
A. G. Dossetter and R. A. Stockman, Chem. Commun, 2013,
49, 9395; c) E. Lacôte and M. Malacria, C.R. Acad. Sci., Ser.
place. Moreover, the quantum yield (
measured (see S.I.) to provide further information in this
regard. Since (420 nm) = 0.077, the photocatalyst must
φ) of this reaction was
φ
IIc: Chim., 1998, 1, 191.
absorb 13 photons to afford one equivalent of product,
indicating that a chain propagation-type mechanism should
not be taking place.
5
a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev.,
2007, 107, 2725; b) J. M. R. Narayanam and C. R. J.
Stephenson, Chem. Soc. Rev., 2011, 40, 102; c) L. Shi and W.
Xia, Chem. Soc. Rev., 2012, 41, 7687.
In conclusion, the first highly diastereoselective
photocatalytic addition to N-sulfinimines is presented. This is
an efficient transformation with full conversion under mild
conditions in absence of toxic reagents. The reaction presents
a wide scope, affording different sulfinamides with high
diastereomeric control. We propose a mechanism based on
the reductive decarboxylation of the phthalimide to generate
the alkyl radical which is added to the N-sulfinimine via
oxidative quenching of the photocatalyst, as it is confirmed by
Stern-Volmer studies. Furthermore, the quantum yield
indicates that the reaction does not involve a radical chain
mechanism.
6
7
C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322.
a) D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2013,
42, 97; b) S. Fukuzumi and K. Ohkubo, Chem. Sci., 2013,
561; c) D. P. Hari and B. König, Chem. Commun., 2014, 50
4
,
,
6688; d) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016,
116, 10075.
For racemic photocatalytic addition to sulfonylimines, see: a)
J. K. Matsui, S. B. Lang, D. R. Heitz and G. A. Molander, ACS
Catal., 2017, 7, 2563. For racemic photocatalytic additions to
N-arylimines, see: b) M. Nakajima, E. Fava, S. Loescher, Z.
Jiang and M. Rueping, Angew. Chem. Int. Ed., 2015, 54, 8828;
c) L. Qi and Y. Chen, Angew. Chem. Int. Ed., 2016, 55, 13312.
For racemic photocatalytic addition to ketimines, see: d) J. L.
Jeffrey, F. R. Petronijević and D. W. C. MacMillan, J. Am.
Chem. Soc., 2015, 137, 8404; e) For an intramolecular
photocatalytic racemic example, see: S.-Y. Hsieh and J. W.
Bode, Org. Lett., 2016, 18, 2098.
8
Spanish Government (CTQ2015-64561-R) and the
European Research Council (ERC-CG, contract number:
647550) are acknowledged.
9
For asymmetric additions, see: a) D. Uraguchi, N. Kinoshita,
T. Kizu and T. Ooi, J. Am. Chem. Soc., 2015, 137, 13768; b) T.
Kizu, D. Uraguchi and T. Ooi, J. Org. Chem., 2016, 81, 6953.
10 L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am. Chem.
Soc., 2014, 136, 10886.
11 C. C. Nawrat, C. R. Jamison, Y. Slutskyy, D. W. C. MacMillan
and L. E. Overman, J. Am. Chem. Soc., 2015, 137, 11270.
12 J. Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem. Commun.,
2015, 51, 5275.
13 Alkyl N-sulfinimines were found to be unreactive under the
present conditions. Alkenyl N-sulfinimines yielded a complex
mixture in which 1,2- and 1,4-additions were detected in the
crude NMR.
14 a) C. Roe, T. M. Solá, L. Sasraku-Neequaye, H. Hobbs, I.
Churcher, D. MacPherson and R. A. Stockman, Chem.
Commun., 2011, 47, 7491. b) C. Roe, H. Hobbs and R. A.
Stockman, J. Org. Chem., 2011, 76, 9452.
15 J.-H. Seo, N.-S. Han, H.-S. Shim, J.-H. Kwon and J.-K. Song,
Bull. Korean Chem. Soc., 2011, 32, 1457.
16 a) M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426. b)
For fundamental review, see: a) D. M. Arias-Rotondo and J.
K. McCusker, Chem. Soc. Rev., 2016, 45, 5803.
17 Intermediate III (see Scheme 2) would be reduced to the
Figure 1. Light/dark experiment for the decarboxylative alkylation of N-
sulfinimines. Conversion determined by 1H NMR. Areas shaded in blue indicate
irradiation and those shaded in black indicate darkness.
corresponding anion followed by protonation to yield 4.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins