5078
S. Hirai, M. Nakada / Tetrahedron Letters 51 (2010) 5076–5079
uniquely functionalized tricyclo[4.4.0.0]decene derivative 7a
R
H
1) PhSLi, THF, reflux, 96%
2) NaBH4, MeOH, THF
0 ºC, 100%
R
(R = (CH2)2OTBDPS) as well as the usefulness of the CAIMCP in nat-
ural product synthesis. Studies on a new enantioselective approach
to (ꢀ)-platensimycin (1) via the same intermediate prepared in
this study are now underway and will be reported in due course.
O
PhO2S
H
3) MsCl, Et3N, (CH2Cl)2
(CH2Cl)2, 50 ºC, 98%
4) t-BuOK, THF, –78 ºC, 92%
H
PhO2S
X
11 (X = SPh)
7a (R = (CH2)2OTBDPS)
OHC
Acknowledgments
1) HF-py, THF, room temp, 87%
SmI2, MeOH
This work was financially supported in part by a Waseda Uni-
versity Grant for the Special Research Projects, a Grant-in-Aid for
Scientific Research on Innovative Areas (No. 21106009), and the
Global COE program ‘Center for Practical Chemical Wisdom’ by
MEXT.
2) (COCl)2, DMSO, Et3N
CH2Cl2, –78 ºC
THF, 0 ºC, 95%
H
PhO2S
X
to room temp, 88%
10 (X = SPh)
1) Li, naphthalene, THF, –20 ºC
69%
TBSO
2) SeO2, dioxane, reflux, 100%
PhO2S
HO
X
References and notes
HO
3) TBSCl, imidazole, DMF
–20 ºC, 69%
9 (X = SPh)
8
1. (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter,
R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.;
Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.;
Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S.
H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.;
Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441,
358–361; (b) Singh, S. B.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.;
Zink, D. L.; Tsou, N. N.; Ball, R. G.; Basilio, A.; Genilloud, O.; Diez, M. T.; Vicente,
F.; Pelaez, F.; Young, K.; Wang, J. J. Am. Chem. Soc. 2006, 128, 11916–11920.
addition/correction: J. Am. Chem. Soc. 2006, 128, 15547; (c) Zhang, C.; Ondeyka,
J.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B. Chem. Commun. 2008, 5034–
5036 (platensimycin B1–B3); (d) Singh, S. B.; Ondeyka, J. G.; Herath, K. B.;
Zhang, C.; Jayasuriya, H.; Zink, D. L.; Parthasarathy, G.; Becker, J. W.; Wang, J.;
Soisson, S. M. Bioorg. Med. Chem. Lett. 2009, 19, 4756–4759 (platensimycin A1);
(e) Singh, S. B.; Jayasuriya, H.; Herath, K. B.; Zhang, C.; Ondeyka, J. G.; Zink, D. L.;
Ha, S.; Parthasarathy, G.; Becker, J. W.; Wang, J.; Soisson, S. M. Tetrahedron Lett.
2009, 50, 5182–5185 (platensimycin A1); (f) Zhang, C.; Ondeyka, J.; Guan, Z.;
Dietrich, L.; Burgess, B.; Wang, J.; Singh, S. B. J. Antibiot. 2009, 62, 699–702
(platensimycin B4); For platensimide, see: (g) Herath, K. B.; Zhang, C.;
Jayasuriya, H.; Ondeyka, J. G.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B.
Org. Lett. 2008, 10, 1699–1702; For homoplatensimide A, see: (h) Jayasuriya, H.;
Herath, K. B.; Ondeyka, J. G.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B.
Tetrahedron Lett. 2008, 49, 3648–3651.
2. (a) Jayasuriya, H.; Herath, K. B.; Zhang, C.; Zink, D. L.; Basilio, A.; Genilloud, O.;
Diez, M. T.; Vicente, F.; Gonzalez, I.; Salazar, O.; Pelaez, F.; Cummings, R.; Ha, S.;
Wang, J.; Singh, S. B. Angew. Chem., Int. Ed. 2007, 46, 4684–4688; (b) Wang, J.;
Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.;
Hernandez, L.; Tinney, E.; Colletti, S.; Herath, K.; Cummings, R.; Salazar, O.;
Gonzalez, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.;
Young, K.; Cully, D.; Singh, S. B. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7612–
7616.
3. (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006, 45, 7086–
7090; (b) Zou, Y.; Chen, C.-H.; Taylor, C. D.; Foxman, B. M.; Snider, B. B. Org. Lett.
2007, 9, 1825–1828; (c) Kaliappan, K. P.; Ravikumar, V. Org. Lett. 2007, 9, 2417–
2419; (d) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed.
2007, 46, 3942–3945; (e) Nicolaou, K. C.; Tang, Y.; Wang, J. Chem. Commun.
2007, 1922–1923; (f) Li, P.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc. 2007,
129, 9534–9535; (g) Ghosh, A. K.; Xi, K. Org. Lett. 2007, 9, 4013–4016; (h) Lalic,
G.; Corey, E. J. Org. Lett. 2007, 9, 4921–4923; (i) Tiefenbacher, K.; Mulzer, J.
Angew. Chem., Int. Ed. 2007, 46, 8074–8075; (j) Nicolaou, K. C.; Pappo, D.; Tsang,
K. Y.; Gibe, R.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2008, 47, 944–946; (k) Kim,
C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2008, 47,
4009–4011; (l) Matsuo, J.-I.; Takeuchi, K.; Ishhibashi, H. Org. Lett. 2008, 10,
4049–4052; (m) Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163–1170; (n) Yun,
S. Y.; Zheng, J.-C.; Lee, D. J. Am. Chem. Soc. 2009, 131, 8413–8415; (o) Nicolaou,
K. C.; Li, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem., Int. Ed. 2009, 48, 6293–
6295; (p) McGrath, N. A.; Bartlett, E. S.; Sittihan, S.; Njardarson, J. T. Angew.
Chem., Int. Ed. 2009, 48, 8543–8546; (q) Nicolaou, K. C.; Li, A.; Edmonds, D. J.;
Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905–16918.
O
1) DMP, CH2Cl2, room temp, 95%
2) Ph3PCH=CH2, THF, 50 ºC
3) TBAF, THF, room temp, 95% (2 steps)
4) DMP, NaHCO3, CH2Cl2, room temp, 82%
4
Scheme 5. Formal total synthesis of (ꢀ)-platencin (2).
sulfide in high yield, and subsequent reduction with NaBH4 affor-
ded the corresponding alcohol. Unfortunately, attempts to dehy-
drate the resultant alcohol under various conditions produced a
mixture of regioisomeric alkenes; hence, we prepared the corre-
sponding mesylate to prepare alkene 11 (X = SPh) by the elimina-
tion reaction under basic conditions.
Although double bond isomerization of 11 (X = SPh) during the
elimination reaction was a problem, when a pre-cooled (ꢀ78 °C)
THF solution of potassium tert-butoxide was added to a solution
of the mesylate in THF at ꢀ78 °C, 11 (X = SPh) was obtained in
92% yield with a trace amount of its regioisomeric alkene isomer.
With the key compound 11 (X = SPh) in hand, we examined the
synthesis of compound 4. Not only did removal of the TBDPS group
in compound 11 (X = SPh) with TBAF caused migration of the dou-
ble bond, but also did the use of TBAF with an acidic additive was
unsuccessful. Fortunately, the reaction of 11 (X = SPh) with HFꢂpy
proceeded cleanly and kept the alkene intact, and the subsequent
Swern oxidation afforded aldehyde 10 (X = SPh).
The key reductive radical cyclization of aldehyde 10 (X = SPh)
with SmI2 proceeded smoothly at 0 °C to afford compound 9
(X = SPh) which possessed the tricyclic core of (ꢀ)-platencin (2)
as a single isomer. Treatment of compound 9 (X = SPh) with lith-
ium naphthalenide removed the sulfide and sulfone simulta-
neously without problem. Subsequent allylic oxidation with
selenium dioxide followed by selective protection of the reactive
allylic hydroxyl with TBSCl at ꢀ20 °C afforded TBS ether 8. Dess–
Martin oxidation of alcohol 8, Wittig methylenation, removal of
the TBS group, and Dess–Martin oxidation in the presence of so-
dium bicarbonate successfully afforded compound 4. The synthe-
sized compound was proved to be identical in all respects to the
intermediate 4 described by Nicolaou (1H and 13C NMR, IR, MS,
4. (a) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J. Angew. Chem., Int. Ed. 2008, 47,
1780–1783; (b) Hayashida, J.; Rawal, V. H. Angew. Chem., Int. Ed. 2008, 47,
4373–4376; (c) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47,
6199–6200; (d) Yun, S. Y.; Zheng, J.-C.; Lee, D. Angew. Chem., Int. Ed. 2008, 47,
6201–6203; (e) Waalboer, D. C. J.; Schaapman, M. C.; Van Delft, F. L.; Rutjes, F.
P. J. T. Angew. Chem., Int. Ed. 2008, 47, 6576–6578; (f) Nicolaou, K. C.; Toh, Q.-Y.;
Chen, D. Y.-K. J. Am. Chem. Soc. 2008, 130, 11292–11293. addition/correction: J.
Am. Chem. Soc. 2008, 130, 14016; (g) Austin, K. A. B.; Banwell, M. G.; Willis, A. C.
Org. Lett. 2008, 10, 4465–4468; (h) Tiefenbacher, K.; Mulzer, J. J. Org. Chem.
2009, 74, 2937–2941; (i) Varseev, G. N.; Maier, M. E. Angew. Chem., Int. Ed. 2009,
48, 3685–3688; (j) Ghosh, A. K.; Xi, K. Angew. Chem., Int. Ed. 2009, 48, 5372–
5375; (k) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J.; Kar, M. J. Am. Chem. Soc.
2009, 131, 15909–15917.
and [a
]D).10 This fact established the absolute structure of cyclo-
propane 7a (R = (CH2)2OTBDPS) and verified the formal enantiose-
lective total synthesis of (ꢀ)-platencin (2).
In summary, a new enantioselective approach to (ꢀ)-platencin
(2) has been developed via the unique chiral intermediate 11
(X = SPh), possessing a useful a,b-unsaturated sulfone functionality
which served as a good radical acceptor. This intermediate 11
(X = SPh) was derived from compound 7a (R = (CH2)2OTBDPS),
which was successfully prepared via the highly enantioselective
CAIMCP that we have developed. Therefore, the formal enantiose-
lective total syntheses reported herein prove the applicability of
5. For reviews on the approaches to platensimycin and related analogues, see: (a)
Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548–2555; (b)
Harsh, P.; O’Doherty, G. A. Chemtracts 2009, 22, 31–40.