M. Jean et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5376–5379
16. Determination of dopamine receptor subtype and adrenergic
5379
a
1 receptor binding:
tled D2R and a1R selectivity (Ki ratio of 250 and 150, respectively).
Biochemical assays for the human D3 and human D2S dopamine receptors
It represents thus a good candidate for further pharmacological
were performed as described previously with slight modifications.15a Briefly,
for the D3 receptor, binding was performed with [3H] spiperone using 5
lg of
and clinical investigations.
membrane suspension (prepared from stable human D3 transfected CHO cell
line). Binding of the D2S receptor was performed with [3H] spiperone using
Acknowledgments
10
HEK293 cell line). For the human adrenergic
with [3H] prazosin using 5
g of membrane suspension (prepared from stable
l
g of membrane suspension (prepared from stable human D2S transfected
a1 receptor, binding was achieved
l
The authors gratefully acknowledge Jean-Claude Camelin,
Myriam Le Roch, Marcel Morvan, and Benoît Messager for technical
assistance.
human hADRA1A transfected cell line). All assays were performed at least in
duplicate. Mean values are given.
17. Step A: preparation of 4-[4-(3-trifluoromethylphenyl)piperazin-1-yl]butyro-
nitrile.
A mixture of 12.02 g (52 mmol) of 1-(3-trifluoromethylphenyl)
piperazine, 7.9 g (57 mmol) of potassium carbonate, 8.5 g (57 mmol) of 4-
bromobutyronitrile and 120 mL of acetonitrile was refluxed overnight. The
reaction medium was concentrated, taken up with ethyl acetate and washed
with water. After separation of the aqueous phase, the organic phase was dried
over magnesium sulfate, filtered and concentrated under reduced pressure. In
this manner, 15 g (97%) of 4-[4-(3-trifluoromethylphenyl)piperazin-1-
yl]butyronitrile were obtained as a viscous oil which was used without any
further purification.
References and notes
1. Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature
(London U.K.) 1990, 347, 146.
2. Levant, B. Pharmacol. Rev. 1997, 49, 231.
3. Caine, S. B.; Koob, G. F. Science (Washington, DC, U.S.) 1993, 260, 1814.
4. Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.; Wermuth, C. G.;
Schwartz, J. C.; Everitt, B. J.; Sokoloff, P. Nature (London, U.K.) 1999, 400, 371.
5. Luedtke, R. R.; Mach, R. H. Curr. Pharm. Des. 2003, 9, 643.
6. (a) Yuan, J.; Chen, X.; Brodbeck, R.; Primus, R.; Braun, J.; Wasley, J. W. F.;
Thurkauf, A. Bioorg. Med. Chem. Lett. 1998, 8, 2715; (b) Robarge, M. J.; Husbands,
S. M.; Kieltyka, A.; Brodbeck, R.; Thurkauf, A.; Hauck Newman, A. J. Med. Chem.
2001, 44, 3175 (erratum 4056).
7. Murray, P. J.; Harrison, L. A.; Johnson, M. R.; Robertson, G. M.; Scopes, D. I. C.;
Buli, D. R.; Graham, S. E. A.; Hayes, A. G.; Kilpatrick, G. J.; Den Daas, I.; Large, C.;
Sheehan, M. J.; Stubbs, C. M.; Turpin, M. P. Bioorg. Med. Chem. Lett. 1995, 5, 219.
8. Bettinetti, L.; Schlotter, K.; Hübner, H.; Gmeiner, P. J. Med. Chem. 2002, 45, 4594.
9. Leopoldo, M.; Berardi, F.; Colabufo, N. A.; De Giorgio, P.; Lacivita, E.; Perrone, R.;
Tortorella, V. J. Med. Chem. 2002, 45, 5727.
10. Huber, D.; Hubner, H.; Gmeiner, F. J. Med. Chem. 2009, 52, 6860.
11. Chu, W.; Tu, Z.; McElveen, E.; Xu, J.; Taylor, M.; Luedtke, R. R.; Mach, R. H.
Bioorg. Med. Chem. 2005, 13, 77.
12. (a) Geneste, H.; Backfisch, G.; Braje, W.; Delzer, J.; Haupt, A.; Hutchins, C. W.;
King, L. L.; Kling, A.; Teschendorf, H.-J.; Unger, L.; Wernet, W. Bioorg. Med. Chem.
Lett. 2006, 16, 490; (b) Geneste, H.; Amberg, W.; Backfisch, G.; Beyerbach, A.;
Braje, W.; Delzer, J.; Haupt, A.; Hutchins, C. W.; King, L. L.; Sauer, D. R.; Unger,
L.; Wernet, W. Bioorg. Med. Chem. Lett. 2006, 16, 1934.
13. Geneste, H.; Backfisch, G.; Braje, W.; Delzer, J.; Haupt, A.; Hutchins, C. W.; King,
L. L.; Lubisch, W.; Steiner, G.; Teschendorf, H.-J.; Unger, L.; Wernet, W. Bioorg.
Med. Chem. Lett. 2006, 16, 658.
14. Ortega, R.; Raviña, E.; Masaguer, C. F.; Areias, F.; Brea, J.; Loza, M. I.; Lopez, L.;
Selent, J.; Pastor, M.; Sanz, F. Bioorg. Med. Chem. Lett. 2009, 19, 1773.
15. (a) Hackling, A.; Ghosh, R.; Perrachon, S.; Mann, A.; Höltje, H.-D.; Wermuth, C.
G.; Schwartz, J.-C.; Sippl, W.; Sokoloff, P.; Stark, H. J. Med. Chem. 2003, 46, 3883;
(b) Heidler, P.; Zohrabi-Kalantari, V.; Calmels, T.; Capet, M.; Berrebi-Bertrand,
I.; Schwartz, J.-C.; Stark, H.; Link, A. Bioorg. Med. Chem. Lett. 2005, 13, 2009.
Step B: preparation of 4-[4-(3-trifluoromethylphenyl)piperazin-1-yl]butyl-
amine. Approximately 1 g of Raney nickel washed beforehand with ethanol
was added to
a solution of 15 g (37.4 mmol) of 4-[4-(3-trifluorophenyl)
piperazin-1-yl]butyronitrile obtained previously, in a mixture of 100 mL of an
aqueous solution of concentrated ammonia and 100 mL of an approx. 8 N
solution of ammoniacal ethanol. The suspension was hydrogenated overnight
under 3 bar of hydrogen at 30 °C. The mixture was filtered on Celite, rinsed with
ethanol and concentrated under a vacuum. The oily residue was taken up with
50 mL of ethanol and concentrated. This operation was repeated once to afford
14 g (92%) de 4-[4-(3-trifluorophenyl)piperazin-1-yl]butylamine as a viscous oil
which was used without any further purification.
Step C: preparation of 2-{4-[4-(3-trifluoromethylphenyl)piperazin-1-yl]butyl}
amino-4-phenylpyridine. In
a test tube, 0.38 g (2.0 mmol) of 2-chloro-4-
phenylpyridine, 0.6 g (2.0 mmol) of 4-[4-(3-trifluoromethylphenyl)piperazin-
1-yl]butylamine and a spatula tipful of 4-dimethylaminopyridine were heated
to approximately 300–350 °C for 3 min. The mixture was diluted with ethyl
acetate and chromatographed on silica gel (eluent: dichloromethane/ethanol
90:10). The product crystallized upon concentration of collected fractions.
Trituration in diethyl oxide, filtration and drying gave 80 mg of 2-{4-[4-(3-
trifluoromethylphenyl)piperazin-1-yl]butyl}amino-4-phenylpyridine as
a
white solid melting at 120 °C (tube).
1H NMR (CDCl3): 8.1 (doublet, 1H); 7.65–7.55 (unresolved peaks, 2H); 7.5–7.25
(unresolved peaks, 4H); 7.2–7.0 (unresolved peaks, 3H); 6.8 (doublet, 1H); 6.55
(singlet, 1H); 4.8 (wide triplet, 1H); 3.35 (multiplet, 2H); 3.35–3.15 (unresolved
peaks, 4H); 2.7–2.55 (unresolved peaks, 4H); 2.45 (triplet, 2H); 1.85–1.65
(unresolved peaks, 4H).