L. Isakovic et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2742–2746
2745
1a and 8a implies that the distance as well as the configuration
stitution of 1d, compound 1f, resulted in a pronounced reduction
of activity against both DNMT1 and DNMT3b2 enzymes.
plays a role in the observed activity of these inhibitors.16a Com-
pound 8c, the epimer of 8a at the
both enzymes. This is in agreement with the structure of SAH
where only
-SAH is an inhibitor of DNMT enzymes.16b
The methyl ester of our lead 1a, compound 1j, maintained mod-
erate activity against DNMT1, while amide 1g lost activity com-
pletely against DNMT1 and retained slight activity towards
DNMT3b2 (Table 1). Methylation of the amines of 1a and 1j, com-
pounds 1h and 1k, respectively, abrogated DNMT1 activity indicat-
ing that the NH of 1a is engaged in important hydrogen-bonding
interactions in the active site of both enzymes.
Deletion of the carboxylic acid group of 1a, compound 1d, re-
sulted in a fivefold and 60-fold loss of enzymatic activity against
DNMT1 and DNMT3b2, respectively (Table 2). The activity of the
constrained amine 1d against DNMT1 is superior to that of the lin-
ear amines 13 and 14.17 Encouraged by such observation we pre-
pared other cyclic amines, 1e, 1i, 9a and 9b, 10a and 10b, 11 and
12, and tested them in our assays (Table 2). Unfortunately, all were
less active than 1d against both DNMT enzymes. The inferior enzy-
matic activity of 1e versus 1d parallels that of 1c versus. 1a impli-
cating that the (S)-configuration is superior to the (R). Generally,
analogues with a pyrrolidine ring, compounds 1d, 1e, 10a, 10b
and 9, were more active than analogues with other rings such as
azetidine, compound 12, piperidine, compounds 9a and 9b, or 2-
amino-cyclopropyl, compound 11 (Table 2).
In a previous Letter, we have reported that analogues of SAH
bearing a chlorine atom in the 2-position of the purine ring are
more selective towards DNMT1.18 To test whether the same ap-
plies to the constrained analogues of SAH, we prepared compounds
1b and 1f bearing a chlorine atom at the 2-position of the purine
ring. From Table 3, it could be seen that compound 1b retained
all activity against DNMT1, but was sevenfold less active against
DNMT3b2 enzyme as compared to 1a. However, the 2-chloro sub-
a
-carbon was not active against
In addition, we reported that lipophilic groups at the N6 posi-
tion of the purine ring of SAH are tolerated.18 N6 substitution of
the constrained analogue 1a, compound 7a, produced an equipo-
tent inhibitor against DNMT3b2 and a threefold reduction of activ-
ity against DNMT1 (Table 3). On the other hand, N6 substitution of
1d, compound 7c, reduced the activity against both enzymes. Con-
comitant substitution of a 2-chloro and N6 2-(biphenyl-4-yl)ethan-
amine groups on 1a (compound 7b) and 1d (compound 7d) was
not beneficial for enzymatic activity. Compound 7b was slightly
more potent against DNMT1, and 3.5-fold less active against
DNMT3b2, as compared to 1a, while 7d retained activity against
DNMT1 and caused almost twofold reduction of activity against
DNMT3b2 enzyme as compared to 1d.
In conclusion, we have prepared inhibitors of DNMT1 and
DNMT3b2 with constrained homocysteine units that are equipo-
tent to SAH. The five membered (2S,4S)-4-mercaptopyrrolidine-
2-carboxylic acid, in 1a, was a good replacement for homocysteine,
while the corresponding six-membered counterpart was less ac-
tive. Deletion of the carboxylic group, compound 1d, eliminating
the Zwitter-ionic character was less active against both enzymes.
Further optimization of 1a failed to give more potent inhibitors.
2-Chloro substitution of 1a, compound 1b, retained potency
against DNMT1, while N6-substitution, compound 7a, retained
DNMT3b2 activity. The concomitant substitutions of 1a at both
2- and N6 positions lead to a threefold decrease of activity against
both enzymes.
L
References and notes
1. (a) Bird, A. Genes Dev. 2002, 16, 6; (b) Siedlecki, P.; Boy, R. G.; Comagic, S.;
Schirrmacher, R.; Wiessler, M.; Zielenkiewicz, P.; Suhai, S.; Lyko, F. Biochem.
Biophys. Res. Commun. 2003, 306, 558; (c) Santi, D. V.; Norment, A.; Garrett, C. E.
Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 6993.
2. (a) Robertson, K. D.; Baylin, A. P. Nat. Rev. Genet. 2000, 1, 11; (b) Jones, P. A.;
Baylin, S. B. Trends Genet. 2000, 16, 168; (c) Cheng, X.; Blumenthal, R. M.
Structure 2008, 16, 341; (d) Verma, M.; Srivastava, S. Lancet Oncol. 2002, 3, 755;
(e) Palmisano, W. A.; Divine, K. K.; Saccomanno, G.; Gilliland, F. D.; Baylin, S. B.;
Herman, J. G.; Belinsky, S. A. Cancer Res. 2000, 60, 5954; (f) Dreosti, I. E. Cancer
Lett. 1997, 114, 319.
Table 3
DNMT1 and DNMT3b2 enzymatic activity of 2- and N-6-substituted analogues of 1a
and 1da
3. (a) Robert, M.-F.; Morin, S.; Beaulieu, N.; Guthier, F.; Chute, I. C.; Barsalou, A.;
MacLeod, A. R. Nat. Genet. 2003, 33, 61; (b) Okano, M.; Xie, S.; Li, E. Nat. Genet.
1998, 19, 219; (c) Okano, M.; Bell, D. W.; Haber, D. A.; Li, E. Cell 1999, 99, 247;
(d) Geiman, T. M.; Sankpal, U. T.; Robertson, A. K.; Chen, Y.; Mazumdar, M.;
Heale, J. T.; Schmeising, J. A.; Kim, W.; Yokomori, K.; Zhao, Y.; Robertson, K. D.
Nucleic Acids Res. 2004, 32, 2716; (e) Goldstein, S. W.; Mylari, B. L.; Perez, J. R.;
N
H
N
HN
O
N
R1
S
R'
N
N
HO
OH
R3
ˇ
ˇ
Glazer, E. A. US patent allocation 6,699,862 B1, 2004.; (f) Svedruzic, Z. M. Curr.
Med. Chem. 2008, 15, 92. and references therin; (g) Yu, N.; Wang, M. Curr. Med.
Chem. 2008, 15, 1350. and references therein.
Compound
R0
R1
R3
DNMT1
IC50
DNMT3b2
IC50 M)
(
lM)
(l
4. (a) Silverman, L. R.; Demakos, E. P.; Peterson, B. L.; Kornblith, A. B.; Holland, J.
C.; Odchimar-Rreissig, R.; Stone, R. M.; Nelson, D.; Powell, B. L.; Decastro, C. M.;
Ellerton, J.; Larson, R. A.; Schiffer, C. A.; Holland, J. F. J. Clin. Oncol. 2002, 20,
2429; (b) Kantarijian, H.; Issa, J. P.; Rosenfeld, C. S.; Bennett, J. M.; Albitar, M.;
DiPersio, J.; Klimek, V.; Slack, J.; de Castro, C.; Ravandi, F.; Helmer, R., 3rd; Shen,
L.; Nimer, S. D.; Leavitt, R.; Raza, A.; Saba, H. Cancer 2006, 106, 1794; (c) Liu, Z.;
Xie, Z.; Jones, W.; Pavlovicz, R. E.; Liu, S.; Yu, J.; Li, P.-K.; Lin, J.; Fuchs, J. R.;
Marcucci, G.; Li, C.; Chan, K. K. Bioorg. Med. Chem. Lett. 2009, 19, 706.
5. (a) Salvatore, F.; Utili, R.; Zappia, V.; Shapiro, S. K. Anal. Biochem. 1971, 41, 16;
(b) Hoffman, J. Anal. Biochem. 1975, 68, 522.
6. (a) Deguchi, T.; Barchas, J. J. Biol. Chem. 1971, 246, 3175; (b) Oliva, A.; Galletti,
P.; Zappia, V. Eur. J. Biochem. 1980, 104, 595; (c) Ueland, P. M.; Saebo, J.
Biochemistry 1979, 18, 4130.
7. (a) Borchardt, R. T.; Wu, Y. S. J. Med. Chem. 1974, 17, 862; (b) Borchardt, R. T.;
Huber, J. A.; Wu, Y. S. J. Med. Chem. 1974, 17, 868; (c) Borchardt, R. T.; Wu, Y. S. J.
Med. Chem. 1975, 18, 300; (d) Borchardt, R. T.; Wu, Y. S. J. Med. Chem. 1976, 19,
197; (e) Borchardt, R. T. Biochem. Pharmacol. 1975, 24, 1542; (f) Borchardt, R. T.;
Huber, J. A.; Wu, Y. S. J. Med. Chem. 1976, 19, 1094.
1a
1b
1d
1f
H
H
H
H
CO2H
CO2H
H
H
Cl
H
1.1
0.82
4.8
0.27
1.9
12.0
>45
H
Cl
36.0
Ph
7ab
7b
7c
CO2H
CO2H
H
H
3.7
2.5
0.26
0.92
Ph
Ph
Ph
Cl
H
15.0
5.0
33.0
8. (a) Cohen, H. M.; Griffiths, A. D.; Tawfik, D. S.; Loakes, D. Org. Biomol. Chem.
2005, 3, 152. and references therein; (b) Botta, M.; Saladino, R.; Pedraly-Noy,
G.; Nicoletti, R. Med. Chem. Res. 1994, 4, 323; (c) Borchardt, T.; Wu, Y. S.; Huber,
J. A. J. Med. Chem. 1976, 19, 1104; (d) Houston, M. D.; Matuszewska, B.;
Borchardt, R. T. J. Med. Chem. 1985, 28, 478; (e) Crooks, P. A.; Tribe, M. J.; Pinney,
R. J. J. Pharm. Pharmacol. 1984, 36, 85.
7d
H
Cl
27.0
a
Values are means of at least two experiments, 20%.
b
N-6-Substituted SAH (2-amino-4-(((2S,3S,4R,5R)-5-(6-(2-(biphenyl-4-yl)ethyl-
amino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methylthio)butanoic
acid) IC DNMT1 = 5.4 M; DNMT3b2 = 0.6
M.17
9. (a) Lin, Q.; Jiang, F.; Shultz, P. G.; Gray, N. S. J. Am. Chem. Soc. 2001, 123, 11608;
(b) Hirano, T.; Hoshino, K.; Iwanami, N.; Kagechika, H. In Poster, 236th National
l
l
50