9218 Inorganic Chemistry, Vol. 49, No. 20, 2010
Aharonovich et al.
neighboring metal center, thus creating the fairly common
ortho C-F bond to yield quantitatively lithium pyridyltetra-
1
κ :κ1 bimetallic bridging coordination mode (Figure 2f),31
fluorobenzimidazolate [C6F4N2C(2-C5H4N)]Li TMEDA (3)
3
which may lead to the formation of coordination polymers32
or cage structures.27,28
and TMSF. In general, the lithium amino-imide intermedi-
ate is known to alternatively attack, besides the trimethylsilyl
group or the perfluorinated ring, other electrophiles in the
system, such as carbodiimide9 or another molecule of the
nitrile, which, in the latter case, results in the formation of
1,3,5-triazapentadienes33,34 or 1,3,5-triazines.12,13,33 The pre-
sence of functionalities such as an acidic hydrogen or an
As a part of our efforts toward the tailoring of the steric
and electronic properties of diazaallyl ligands and, in parti-
cular, the introduction of fluorinated moieties on the ligand
backbone close to the coordinated metal, we have recently
disclosed11 the reaction of (Me3SiNC6F5)Li TMEDA (1;
3
TMS=SiMe3; TMEDA=tetramethylethylenediamine) with
2-cyanopyridine in toluene, which gives, after the addition of
lithium amide to the CtN bond and a concomitant [1,3] silyl
shift, the asymmetric amidinate product [C6F5NC(2-C5H4N)-
(17) (a) Barker, J.; Barr, D.; Barnett, N. D. R.; Clegg, W.; Cragg-Hine, I.;
Davidson, M. G.; Davies, R. P.; Hodgson, S. M.; Howard, J. A. K.; Kilner,
M.; Lehmann, C. W.; Lopez-Solera, I.; Mulvey, R. E.; Raithby, P. R.;
Snaith, R. J. Chem. Soc., Dalton Trans. 1997, 951–955. (b) Cole, M. L.; Junk,
P. C.; Louis, L. M. J. Chem. Soc., Dalton Trans. 2002, 3906–3914. (c)
Hitchcock, P. B.; Lappert, M. F.; Merle, P. G. Phosphorus, Sulfur Silicon Relat.
Elem. 2001, 168-169, 363–366. (d) Hitchcock, P. B.; Lappert, M. F.; Merle, P. G.
Dalton Trans. 2007, 585–594. (e) Lisovskii, A.; Botoshansky, M.; Eisen, M. S.
J. Chem. Soc., Dalton Trans. 2001, 1692–1698. (f) Pang, X.-A.; Yao, Y.-M.;
Wang, J.-F.; Sheng, H.-T.; Zhang, Y.; Shen, Q. Chin. J. Chem . 2005, 23, 1193–
1197. (g) Richter, J.; Feiling, J.; Schmidt, H.-G.; Noltemeyer, M.; Brueser, W.;
Edelmann, F. T. Z. Anorg. Allg. Chem. 2004, 630, 1269–1275. (h) Schmidt,
J. A. R.; Arnold, J. J. Chem. Soc., Dalton Trans. 2002, 3454–3461. (i) Stalke, D.;
Wedler, M.; Edelmann, F. T. J. Organomet. Chem. 1992, 431, C1–C5. (j) Trifonov,
A. A.; Lyubov, D. M.; Fedorova, E. A.; Fukin, G. K.; Schumann, H.; Muhle, S.;
Hummert, M.; Bochkarev, M. N. Eur. J. Inorg. Chem. 2006, 747–756. (k) Villiers,
C.; Thuery, P.; Ephritikhine, M. Eur. J. Inorg. Chem. 2004, 4624–4632.
(18) Aharonovich, S.; Botoshanski, M.; Rabinovich, Z.; Waymouth,
R. M.; Eisen, M. S. Inorg. Chem. 2010, 49, 1220-1229.
(19) Baldamus, J.; Berghof, C.; Cole, M. L.; Hey-Hawkins, E.; Junk,
P. C.; Louis, L. M. Eur. J. Inorg. Chem. 2002, 2878–2884.
(20) Eisen, M. S.; Kapon, M. J. Chem. Soc., Dalton Trans. 1994, 3507–
3510.
(21) Knapp, C.; Lork, E.; Watson, P. G.; Mews, R. Inorg. Chem. 2002, 41,
2014–2025.
(22) (a) Bai, S.-D.; Tong, H.-B.; Guo, J.-P.; Zhou, M.-S.; Liu, D.-S. Inorg.
Chim. Acta 2009, 362, 1143–1148. (b) Otero, A.; Fernandez-Baeza, J.; Antinolo,
A.; Tejeda, J.; Lara-Sanchez, A.; Sanchez-Barba, L. F.; Lopez-Solera, I.;
Rodriguez, A. M. Inorg. Chem. 2007, 46, 1760–1770.
NTMS]Li TMEDA (2). This amidinate is unstable in solu-
3
tion and undergoes, through an amino-imide intermediate, a
facile, room-temperature, silicon-assisted activation of the
(3) For selected recent examples, see: (a) Aharonovich, S.; Volkis, V.;
Eisen, M. S. Macromol. Symp. 2007, 260, 165–171. (b) Boyd, D. A.; Crutchley,
R. J.; Fanwicka, P. E.; Ren, T. Inorg. Chem. 2010, 49, 1322–1324. (c) Cotton,
F. A.; Li, Z.; Murillo, C. A. Inorg. Chem. 2009, 48, 11847–11852. (d) Cotton,
F. A.; Murillo, C. A.; Young, M. D.; Yu, R.; Zhao, Q. Inorg. Chem. 2008, 47, 219–
229. (e) Donahue, J. P.; Murillo, C. A. Dalton Trans. 2008, 1547–1551. (f) Evans,
W. J.; Walensky, J. R.; Ziller, J. W. Inorg. Chem. 2010, 49, 1743–1749. (g) Evans,
W. J.; Walensky, J. R.; Ziller, J. W. Organometallics 2010, 29, 101–107. (h) Ge,
S.; Meetsma, A.; Hessen, B. Organometallics 2008, 27, 3131–3135. (i) Jones, C.;
Rose, R. P.; Stasch, A. Dalton Trans. 2008, 2871–2878. (j) Jones, C.; Schulten,
C.; Rose, R. P.; Stasch, A.; Aldridge, S.; Woodul, W. D.; Murray, K. S.;
Moubaraki, B.; Brynda, M.; La Macchia, G.; Gagliardi, L. Angew. Chem., Int.
Ed. 2009, 48, 7406–7410. (k) Kondo, H.; Sue, T.; Kageyama, A.; Yamaguchi, Y.;
Sunada, Y.; Nagashima, H. J. Organomet. Chem. 2009, 694, 795–800. (l) Luo,
Y.; Wang, X.; Chen, J.; Luo, C.; Zhang, Y.; Yao, Y. J. Organomet. Chem. 2009,
694, 1289–1296. (m) Melgarejo, D. Y.; Chiarella, G. M.; Mohamed, A. A.;
Fackler, J. P., Jr. Z. Naturforsch., B: Chem. Sci. 2009, 64, 1487–1490. (n) Pap,
J. S.; DeBeer George, S.; Berry, J. F. Angew. Chem., Int. Ed. 2008, 47, 10102–
10105. (o) Sciarone, T. J. J.; Nijhuis, C. A.; Meetsma, A.; Hessen, B. Organo-
metallics 2008, 27, 2058–2065. (p) Sun, J.-F.; Chen, S.-J.; Duan, Y.; Li, Y.-Z.;
Chen, X.-T.; Xue, Z.-L. Organometallics 2009, 28, 3088–3092. (q) Tsai, Y.-C.;
Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am.
Chem. Soc. 2009, 131, 12534–12535. (r) Wang, J.; Yao, Y.; Zhang, Y.; Shen, Q.
Inorg. Chem. 2009, 48, 744–751. (s) Wu, Y.-Y.; Yeh, C.-W.; Chan, Z.-K.; Lin,
C.-H.; Yang, C.-H.; Chen, J.-D.; Wang, J.-C. J. Mol. Struct. 2008, 890, 48–56.
(4) Aharonovich, S.; Botoshanski, M.; Tumanskii, B.; Nomura, K.;
Waymouth, R. M.; Eisen, M. S. J. Chem. Soc., Dalton Trans. 2010, 39,
5643-5649.
(5) Bai, S.-D.; Tong, H.-B.; Guo, J.-P.; Zhou, M.-S.; Liu, D.-S.; Yuan,
S.-F. Polyhedron 2010, 29, 262–269.
(6) Sen, S. S.; Jana, A.; Roesky, H. W.; Schulzke, C. Angew. Chem., Int.
Ed. 2009, 48, 8536–8538.
(7) Heitmann, D.; Jones, C.; Mills, D. P.; Stasch, A. Dalton Trans. 2010,
39, 1877–1882.
(8) Rabinovich, E.; Aharonovich, S.; Botoshanski, M.; Eisen, M. S.
J. Chem. Soc., Dalton Trans. 2010, 39, 6667-6676.
(9) Schmidt, S.; Gondzik, S.; Schulz, S.; Blaeser, D.; Boese, R. Organo-
metallics 2009, 28, 4371–4376.
(10) (a) Boesveld, W. M.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc.,
Perkin Trans. 1 2001, 1103–1108. (b) Inukai, Y.; Oono, Y.; Sonoda, T.;
Kobayashi, H. Bull. Chem. Soc. Jpn. 1979, 52, 516–520. (c) Knapp, C.; Lork,
E.; Borrmann, T.; Stohrer, W.-D.; Mews, R. Eur. J. Inorg. Chem. 2003, 3211–
3220.
(23) Baker, R. J.; Jones, C. J. Organomet. Chem. 2006, 691, 65–71.
(24) The nomenclature of the amidinate isomers/tautomers is adopted
from: Patai, S.; Rappoport, Z. The chemistry of amidines and imidates;
Wiley: Chichester, U.K., 1991.
(25) For selected recent reviews, see: (a) Bhattacharya, S.; Chaudhuri, P.
Curr. Med. Chem. 2008, 15, 1762–1777. (b) Boiani, M.; Gonzalez, M. Coord.
Chem. Rev. 2005, 5, 409–424. (c) Velik, J.; Baliharova, V.; Fink-Gremmels, J.;
Bull, S.; Lamka, J.; Skalova, L. Res. Vet. Sci. 2004, 76, 95–108.
(26) (a) Chan, W. K. Coord. Chem. Rev. 2007, 251, 2104–2118. (b) Haga,
M. Compr. Coord. Chem. II 2004, 1, 125–134. (c) Liu, S.; Zuo, W.; Zhang, S.;
Hao, P.; Wang, D.; Sun, W.-H. J. Polym. Sci., Part A: Polym. Chem. 2008, 46,
3411–3423. (d) Lyaskovskyy, V. V.; Voitenko, Z. V.; Kovtunenko, V. A. Chem.
Heterocycl. Compd. 2007, 43, 253–276. (e) Sun, W.-H.; Liu, S.; Zhang, W.;
Zeng, Y.; Wang, D.; Liang, T. Organometallics 2010, 29, 732–741. (f) Tellez, F.;
Lopez-Sandoval, H.; Castillo-Blum, S. E.; Barba-Behrens, N. ARKIVOC 2008,
5, 245–275.
(27) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.;
O’Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939–943.
(28) Wang, B.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M.
Nature 2008, 453, 207–211.
(29) Berding, J.; van Dijkman, T. F.; Lutz, M.; Spek, A. L.; Bouwman, E.
Dalton Trans. 2009, 6948–6955.
(30) (a) Liang, B.; Wang, L.; Zhu, X.; Shi, H.; Peng, J.; Cao, Y.
J. Organomet. Chem. 2009, 694, 3172–3178. (b) Bai, X.-Q.; Zhang, S.-H. Acta
Crystallogr., Sect. C: Cryst. Struct. Commun. 2009, E65, m397. (c) Zhang,
S. H.; Zeng, M. H.; Liang, H. Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 2007, E63, m1055–m1056. (d) Panasyuk, A. G.; Aliev, Z. G.; Ranskii,
A. N. Russ. J. Coord. Chem. 2006, 32, 266–269. (e) Chen, T.-R.; Chien, R.-H.;
Yeh, A.; Chen, J.-D. J. Organomet. Chem. 2006, 691, 1998–2004.
(31) (a) Wu, T.; Li, D.; Feng, X.-L.; Cai, J.-W. Inorg. Chem. Commun.
2003, 6, 886–890. (b) Plass, W.; Pohlmann, A.; Subramanian, P. S.; Srinivas, D.
Z. Anorg. Allg. Chem. 2002, 628, 1377–1384. (c) Yang, H.; Shi, J.; Chen, L.;
Luo, B. Polyhedron 1996, 15, 3891–3895. (d) Pellinghelli, M. A.; Tiripicchio, A.;
Cabeza, J. A.; Oro, L. A. J. Chem. Soc., Dalton Trans. 1990, 1509–1512. (e)
Beardwood, P.; Gibson, J. F. J. Chem. Soc., Chem. Commun. 1986, 490–492. (f)
Kolks, G.; Lippard, S. J. Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
1984, C40, 261–271.
(11) Aharonovich, S.; Botoshanski, M.; Eisen, M. S. Inorg. Chem. 2009,
48, 5269–5278.
(12) Ma, Y.; Breslin, S.; Keresztes, I.; Lobkovsky, E.; Collum, D. B.
J. Org. Chem. 2008, 73, 9610–9618.
(13) Volkis, V.; Nelkenbaum, E.; Lisovskii, A.; Hasson, G.; Semiat, R.;
Kapon, M.; Botoshansky, M.; Eishen, Y.; Eisen, M. S. J. Am. Chem. Soc.
2003, 125, 2179–2194.
(14) Boesveld, W. M.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc.,
Dalton Trans. 1999, 4041–4046.
(15) Ong, T.-G.; O’Brien, J. S.; Korobkov, I.; Richeson, D. S. Organo-
metallics 2006, 25, 4728–4730.
(16) (a) Aharonovich, S.; Kapon, M.; Botoshanski, M.; Eisen, M. S.
Organometallics 2008, 27, 1869–1877. (b) Sanger, A. R. Inorg. Nucl. Chem.
Lett. 1973, 9, 351–354.