LETTER
Enantioselective Hydrosilylation of Aromatic Alkenes
2959
Acknowledgment
phebox-Rh cat (2a)
(1 mol%)
(EtO)3SiH (3b)
(1.2 equiv)
Ph
This research was supported by a Grant-in-Aid for Scientific Re-
search from the Japan Society for the Promotion of Science (No.
22245014).
OH
9a
or
Ph
toluene, 30 °C, 3 h
then H2O2, KF, KHCO3
Ph
10
References
9a: 98%, 98% ee (S), dr = 95:5
9b: 98%, 96% ee (S), dr = 93:7
9b
(1) (a) Nishiyama, H.; Itoh, K. Asymmetric Hydrosilylation and
Related Reactions, In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; Wiley–VCH: New York, 2000, Chapt. 2, pp
111–143. (b) Fleming, I.; Barbero, A.; Walter, D. Chem.
Rev. 1997, 97, 2063. (c) Jones, G. R.; Landais, Y.
Tetrahedron 1996, 52, 7599. (d) Marciniec, M. Coord.
Chem. Rev. 2005, 249, 2374.
2a (5 mol%)
3b (1.2 equiv)
toluene, 30 °C, 24 h
then H2O2, KF, KHCO3
OH
11
12
99%, 91% ee (R), dr = 100:0
(2) Yamamoto, K.; Hayashi, T.; Kumada, M. J. Am. Chem. Soc.
1971, 93, 5301.
2a (2 mol%)
(3) (a) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc. 1991, 113,
9887. (b) Uozumi, Y.; Lee, S.-Y.; Hayashi, T. Tetrahedron
Lett. 1992, 33, 7185. (c) Uozumi, Y.; Kitayama, K.;
Hayashi, T. Tetrahedron: Asymmetry 1993, 4, 2419.
(d) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J.
Am. Chem. Soc. 2003, 125, 11508. (e) Jensen, J. F.;
Svendsen, B. Y.; la Cour, T. V.; Pedersen, H. L.; Johannsen,
M. J. Am. Chem. Soc. 2002, 124, 4588. (f) Oestreich, M.;
Rendler, S. Angew. Chem. Int. Ed. 2005, 44, 1661.
(g) Rendler, S.; Oestreich, M.; Butts, C. P.; Lloyd-Jones, G.
C. J. Am. Chem. Soc. 2007, 129, 502. (h) Han, J. W.;
Tokunaga, N.; Hayashi, T. J. Am. Chem. Soc. 2001, 123,
12915. (i) Yamamoto, T.; Yamada, T.; Nagata, Y.;
Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.
(4) (a) Bergens, S. H.; Noheda, P.; Whelan, J.; Bosnich, B. J.
Am. Chem. Soc. 1992, 114, 2121. (b) Tamao, K.; Thoma, T.;
Inui, N.; Nakamura, O.; Ito, Y. Tetrahedron Lett. 1990, 31,
7333. (c) Tamao, K.; Nakamura, K.; Ishii, H.; Yamaguchi,
S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 12469.
(5) (a) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53,
5178. (b) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem.
Soc. 1989, 111, 3426. (c) Sato, M.; Miyaura, N.; Suzuki, A.
Tetrahedron Lett. 1990, 31, 231. (d) Schnyder, A.;
Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. Engl.
1995, 34, 931. For reviews, see: (e) Beletskaya, I.; Pelter, A.
Tetrahedron 1997, 53, 4957. (f) Carroll, A.-M.; O’Sullivan,
T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
(6) (a) Onopchenko, A.; Sabourin, E. T.; Beach, D. L. J. Org.
Chem. 1983, 48, 5101. (b) Takeuchi, R.; Yasue, H.
Organometallics 1996, 15, 2098.
3b (1.2 equiv)
THF, 30 °C, 5 h
then H2O2, KF, KHCO3
OH
13
14
97%, 83% ee (S)
Scheme 3
ear products was strongly affected by the para-substitu-
ents of the styrene derivatives. Thus, the electronic
property of the C=C bond is considered to be a significant
factor for the selectivity between A and B. Although detail
of this electronic effect remains unclear, electron-rich sty-
renes might be tightly coordinated to the trivalent Rh(III)
center rather than to electron-deficient alkenes.14,15 Such
steric repulsion between the alkene and the phebox ligand
may affect the regioselectivity of the silylated products.
Ar
β
α
α
β
Ar
Re
N
N
R
R
Rh
Rh
H
H
O
O
N
N
Si
Si
R
R
A
B
(7) Tsuchiya, Y.; Uchimura, H.; Kobayashi, K.; Nishiyama, H.
Synlett 2004, 2099.
(8) Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.;
Itoh, J.-I.; Kikuchi, M.; Yamamoto, Y.; Nishiyama, H.
Chem.–Eur. J. 2006, 12, 63.
(9) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M.
Organometallics 1983, 2, 1694.
Si
S
Si
Ar
Ar
Scheme 4
(10) Doucet, H.; Fernandez, E.; Layzell, T. P.; Brown, J. M.
Chem.–Eur. J. 1999, 5, 1320.
(11) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16.
(12) Bergens, S. H.; Noheda, P.; Whelan, J.; Bosnich, B. J. Am.
Chem. Soc. 1992, 114, 2128.
(13) For the modified Chalk–Harrod mechanism for a theoretical
study on rhodium catalysts, see: Sakaki, S.; Suminoto, M.;
Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S.
Organometllics 2002, 21, 3788.
(14) For examples of transition-metal–π-styrene complexes, see:
(a) Fueno, T.; Okuyama, T.; Deguchi, T.; Furukawa, J. J.
Am. Chem. Soc. 1965, 87, 170. (b) Kurosawa, H.; Asada, N.
J. Organomet. Chem. 1981, 217, 259. (c) Munakata, M.;
In summary, we have reported the highly efficient chiral
phebox-Rh acetate complexes for the enantioselective hy-
drosilylation of alkenes using (EtO)3SiH to generate the
corresponding optically active silylated compounds.16
The acetate complexes 2 significantly enhance the catalyt-
ic activity and the outcome of the enantioselectivity of the
products. Hydrosilylation of both trans- and cis-β-methyl-
styrene was found to produce the same enantiomer with
branch selectivity as well as enantioselectivity.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2957–2960