R. Rani, R. K. Peddinti / Tetrahedron: Asymmetry 21 (2010) 2487–2492
2491
Table 4
Comparison of results from 1a and proline-catalyzed reactionsa
Entry
Catalyst (mol %)
Product
Yield (%)
dr (anti:syn)
ee (%)
1
2
Proline (15)
1a (20)
94
95
95:5
95:5
À23
79
O
NO2
3a
3
4
Proline (15)
1a (20)
97
89
—
—
À7
50
O
NO2
8a
a
Organocatalyst 1a-catalyzed reactions were performed at 0 °C under neat conditions and proline-catalyzed reactions were performed at room temperature in DMSO.
evaluated as well and products 4a,b, 5a and 6a were obtained in
excellent yields and with good to very good enantioselectivities.
The results are shown in Table 3. The reaction of nitrostyrene 2b
(R = o-NO2) with cyclopentanone as a Michael donor was also per-
formed to afford the adduct 7a with very good enantiomeric ex-
cess. The reaction between acetone and nitrostyrene 2a under
the present catalytic system was then examined. Product 8a was
obtained in very high chemical yield albeit in moderate enantio-
meric purity.
the Michael adduct was performed on a chiral stationary phase
using hexane-isopropanol as the eluting solvent.
Acknowledgments
We are grateful to the Department of Science and Technology
(DST), New Delhi for financial support (Research Grant No. SR/S1/
OC-15/2005).
The asymmetric induction achieved by the catalytic system pre-
sented herein was good to very good. The results obtained from a
couple of Michael reactions mediated by
in Table 4.
References
L
-proline4b are compared
1. Tomioka, K.; Nagaoka, Y.. In Comprehensive Asymmetric Catalysis; Jacobsen, E.
N., Pflatz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vols. I–III, pp 1105–
1120. Yamaguchi, M. pp 1121–1139.
2. Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 833–861.
3. For reviews on the organocatalytic asymmetric Michael addition, see: (a)
Nielsen, M.; Jacobsen, C. B.; Holub, N.; Paixão, M. W.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2010, 49, 2668–2679; (b) Sulzer-Mossé, S.; Alexakis, A. Chem.
Commun. 2007, 3123–3135; (c) Almasßi, D.; Alonso, D. A.; Nájera, C. Tetrahedron:
Asymmetry 2007, 18, 299–365; (d) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J.
Org. Chem. 2002, 1877–1894.
4. (a) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123,
5260–5267; (b) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423–2425;
(c) Enders, D.; Seki, A. Synlett 2002, 26–28.
5. (a) Liu, J.; Li, P.; Zhang, Y.; Ren, K.; Wang, L.; Wang, G. Chirality 2010, 22, 432–
441; (b) Li, J.; Hu, S.; Luo, S.; Cheng, J.-P. Eur. J. Org. Chem. 2009, 132–140; (c)
Yan, Z. Y.; Niu, Y. N.; Wei, H. L.; Wu, L. Y.; Zhao, Y. B.; Liang, Y. M. Tetrahedron:
Asymmetry 2006, 17, 3288–3293; (d) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji,
M. Angew. Chem., Int. Ed. 2005, 44, 4212–4215; (e) Wang, W.; Wang, J.; Li, H.
Angew. Chem., Int. Ed. 2005, 44, 1369–1371; (f) Mosse, S.; Alexakis, A. Org. Lett.
2005, 7, 4361–4364; (g) Chi, Y. G.; Gellman, S. H. Org. Lett. 2005, 7, 4253–4256.
6. (a) Singh, V. K.; Vishnumaya Org. Lett. 2007, 9, 1117–1119; (b) Reyes, E.;
Vicario, J. L.; Badia, D.; Carrillo, L. Org. Lett. 2006, 8, 6135–6138; (c) Zu, L. S.;
Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077–3079.
7. (a) Ni, B.; Zhang, Q.; Headley, A. D. Tetrahedron Lett. 2008, 49, 1249–1252; (b)
Miao, T.; Wang, L. Tetrahedron Lett. 2008, 49, 2173–2176; (c) Zhao, Y. B.; Zhang,
L.-W.; Wu, L.-Y.; Zhong, X.; Li, R.; Ma, J.-T. Tetrahedron: Asymmetry 2008, 19,
1352–1355.
8. (a) Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Angew. Chem., Int. Ed.
2006, 45, 3093–3097; (b) Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128,
9624–9625; (c) Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas,
C. F., III J. Am. Chem. Soc. 2006, 128, 4966–4967; (d) Ishii, T.; Fujioka, S.;
Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558–9559; (e) Mase, N.;
Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III Org. Lett. 2004, 6, 2527–2530.
9. Zhu, M. K.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Tetrahedron: Asymmetry
2006, 17, 491–493.
10. (a) Jiang, X.; Zhang, B.; Zhang, Y.; Lin, L.; Yan, W.; Wang, R. Chirality 2010, 22,
625–634; (b) He, T.; Qian, J.-Y.; Song, H.-L.; Wu, X.-Y. Synlett 2009, 3195–3197;
(c) Zhao, S.-L.; Zheng, C.-W.; Zhao, G. Tetrahedron: Asymmetry 2009, 20, 1046–
1051; (d) Wang, C.-J.; Zhang, Z.-H.; Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008,
12, 1431–1433; (e) Jiang, L.; Zheng, H.-T.; Liu, T.-Y.; Yue, L.; Chen, Y.-C.
Tetrahedron 2007, 63, 5123–5128; (f) Vakulya, B.; Varga, S.; Soos, T. J. Org.
Chem. 2008, 73, 3475–3480; (g) Hamza, A.; Schubert, G.; Soos, T.; Papai, I. J. Am.
Chem. Soc. 2006, 128, 13151–13160.
11. For selected examples, see: Refs. 7, 9 and (a) Tan, B.; Zeng, X.; Lu, Y.; Chua, P. J.;
Zhong, G. Org. Lett. 2009, 11, 1927–1930; (b) Chua, P. J.; Tan, B.; Zeng, X.; Zhong,
G. Bioorg. Med. Chem. Lett. 2009, 19, 3915–3918; (c) Lvew, G.; Jin, R.; Ma, W.;
Gao, L. Tetrahedron: Asymmetry 2008, 19, 2568–2572; (d) Díez, D.; Antón, A. B.;
3. Conclusion
In conclusion, new prolinamide derived organocatalysts that
contain a structural rigid bicyclic camphor scaffold and amide moi-
ety were used for the first time in Michael additions. We have dem-
onstrated a practical application of camphor-10-sulfonamide based
prolinamide for the Michael additions of ketones with b-nitrosty-
renes. In these transformations, the catalyst exhibited good catalytic
activity and the reaction proceeded in excellent diastereoselectivity
with good to high enantioselectivity, which may be potentially use-
ful for preparing enantiomerically enriched c-nitroketones.
4. Experimental
4.1. General
The structures of Michael adducts were confirmed from their IR,
1H NMR (500 MHz) and 13C NMR (125 MHz) spectral studies. The
absolute configuration of the major syn adducts is as shown in
structures and is based on the retention times reported in the
literature.7a,11b,15
4.2. Typical procedure for the enantioselective Michael reaction
catalyzed by organocatalyst 1a
A mixture of a nitrostyrene (0.2 mmol), organocatalyst 1a
(20 mol %), benzoic acid (15 mol %), and cycloalkanone/acetone
(05–1.0 mL) was stirred for 12–24 h at 0 °C. The reaction was mon-
itored by TLC at regular intervals. Upon completion of reaction, the
crude product was submitted to 1H NMR (500 MHz) to determine
the diastereomeric excess. The residue was subjected to column
chromatography on silica gel to afford pure product. The HPLC of