3,6-Di-tert-butyl-9H-carbazole: 3,6-di-tert-butyl-9H-carbazole
8.0 Hz, 4H), 7.39 (s, 1H), 7.37−7.34 (t, J = 7.2 Hz, 4H), 7.31−7.29 (d, J =
8.0 Hz, 4H), 7.24−7.22 (d, J = 7.2 Hz, 3H), 7.20−7.18 (d, J = 8.0 Hz, 4H),
6.96−6.94 (d, J = 8.0 Hz, 5H), 6.94 (s, 1H), 6.84−6.82 (m, 2H). 13C NMR
(400 MHz, CDCl3, δ): 150.7, 145.5, 145.2, 140.2, 131.4, 130.4, 130.1,
128.1, 127.9, 126.1, 125.9, 120.9, 120.5, 65.1. MS (EI): m/z (100%) calcd.
for C44H28Br2, 716.5; found, 716 (100).
was prepared according to previously reported procedure.[48]
Supporting Information
4,4′-(9,9′-(1,3-Phenylene)bis(9H-fluorene-9,9-diyl))bis(N,N-
Supporting Information is available from the Wiley Online Library or
from the author.
diphenylaniline) (DTPAFB):
A mix of DBPFB (1 mmol, 0.716 g),
diphenylamine (0.347 g, 2.05 mmol), Pd(OAc)2 (0.014 g, 4 mmol) and
NaOtBu (0.169 g, 2.05 mmol) in 4 mL of p-xylene and 0.7 mL PtBu3
was stirred at 120 °C for 8 h under nitrogen atmosphere. After cooling
to room temperature 20 mL water and 60 mL dichloromethane were
added, and the organic phase was separated and concentrated under
reduced pressure to give a gray solid, which was subjected to column
chromatography (dichloromethane and petroleum ether as eluent,
1:8, v/v, Rf = 0.3) to yield the target product of DTPAFB. 1H NMR
(400 MHz, CDCl3, δ): 7.74 (d, J = 7.2 Hz, 4H), 7.51 (s, 1H), 7.33 (t,
J = 7.2 Hz, 4H), 7.28 (d, J = 4.4 Hz, 4H), 7.23−7.17 (m, 12 H), 7.05 (d, J =
5.2 Hz, 8H), 7.00−6.96 (m, 8H), 6.90 (t, J = 4.4 Hz, 5H), 6.8−6.79 (m, 2H).
13C NMR (400 MHz, CDCl3, δ): 151.31, 147.86, 146.34, 146.20,
140.25, 140.10, 130.80, 129.36, 129.15, 127.74, 127.53, 126.30, 125.46,
124.35, 123.37, 122.86, 120.24, 65.08. MS (MALDI-TOF): m/z calcd.
for C68H48N2, 892.4; found, 892.7 (m+). Elemental anal. calcd (%) for
C68H48N2: C, 91.45; H, 5.42; N, 3.14; Found: C, 91.43; H, 5.44; N, 3.12.
N,N′-(4,4′-(9,9′-(1,3-Phenylene)bis(9H-fluorene-9,9-diyl))bis(4,1-
phenylene))bis(N-phenylnaphthalen-1-amine) (DNPAFB): DNPAFB was
prepared similarly to DTPAFB using N-phenylnaphthalen-1-amine to
replace diphenylamine. 1H NMR (400 MHz, CDCl3, δ): 7.88 (d, J =
8.4 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.69 (d, J =
7.6 Hz, 4H), 7.50 (s, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.6 Hz,
2H), 7.31−7.21 (m, 8H), 7.18 (t, J = 8.0 Hz, 7H), 7.14 (s, 1H), 7.04 (t, J =
7.6 Hz, 4H), 6.99 (d, J = 7.6 Hz, 4H), 6.91−6.86 (m, 10H), 6.82 (d, J =
7.6 Hz, 1H), 6.73 (d, J = 7.6 Hz, 2H). 13C NMR (400 MHz, CDCl3, δ):
151.24, 148.48, 146.91, 146.22, 143.61, 140.18, 139.29, 135.42, 131.39,
131.06, 129.19, 129.07, 128.51, 127.63, 127.42, 127.33, 126.53, 126.27,
125.26, 124.34, 121.65, 121.44, 120.15, 64.96. MS (MALDI-TOF): m/z
calcd. for C76H52N2, 992.4; found, 992.6 (M+). Elemental anal. calcd (%)
for C76H52N2: C, 91.90; H, 5.28; N, 2.82; Found: C, 91.89; H, 5.30; N,
2.81.
Acknowledgements
We acknowledge financial support from the National Natural Science
Foundation of China (20825208, 60736004, 20721061), the National
Major State Basic Research Development Program (2009CB623603),
and the Chinese Academy of Sciences.
Received: March 12, 2010
Revised: May 15, 2010
Published online: July 30, 2010
[1] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem,
K. Leo, Nature 2009, 459, 234.
[2] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys.
2001, 90, 5048.
[3] S. O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, K. Y. Ko, J. Y. Park,
Y. G. Baek, Appl. Phys. Lett. 2008, 93, 063306.
[4] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi,
Appl. Phys. Lett. 2005, 86, 071104.
[5] Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson,
S. R. Forrest, Nature 2006, 440, 908.
[6] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett.
2001, 79, 156.
[7] S. J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 2008, 20, 4189.
[8] D. A. Pardo, G. E. Jabbour, N. Peyghambarian, Adv. Mater. 2000, 12,
1249.
[9] B. J. de Gans, P. C. Duineveld, U. S. Schubert, Adv. Mater. 2004, 16,
203.
1,3-Bis(9-(4-(9H-carbazol-9-yl)phenyl)-9H-fluoren-9-yl)benzene
(DCPFB): A mixture of DBPFB (1 mmol, 0.716 g), 9H-carbazole (0.343 g,
2.05 mmol), Pd(OAc)2 (0.014 g,
4 mmol) and K2CO3 (0.345 g,
2.50 mmol) in 4 mL of p-xylene and 0.7 mL PtBu3 was stirred at 120 °C for
8 h under nitrogen atmosphere. After cooling to room temperature 20 mL
water and 60 dichloromethane were added, and the organic phase was
separated and concentrated under reduced pressure to give a gray solid,
which was subjected to column chromatography (dichloromethane and
petroleum ether as eluents, 1:8, v/v, Rf = 0.3) to yield the target product
[10] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes,
R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos,
J. L. Brédas, M. Lögdlund, W. R. Salaneck, Nature 1999, 397, 121.
[11] C. Ulbricht, B. Beyer, C. Friebe, A. Winter, U. S. Schubert, Adv. Mater.
2009, 21, 4418.
[12] X. H. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 2006,
18, 948.
1
of DCPFB. H NMR (400 MHz, CDCl3, δ): 8.13 (d, J = 7.6 Hz, 4H), 7.81
(d, J = 7.6 Hz, 4H), 7.52 (s, 1H), 7.41−7.36 (m, 24H), 7.34−7.28 (m, 8H),
7.24 (d, J = 1.7 Hz, 1H), 7.09−7.02 (m, 3H). 13C NMR (400 MHz, CDCl3,
δ): 150.93, 145.86, 145.20, 140.89, 140.32, 139.58, 136.24, 129.72, 127.92,
126.71, 126.24, 125.94, 123.46, 120.43, 120.01, 119.55, 110.67, 109.91,
65.37. MS (MALDI–TOF): m/z (100%) calcd. for C68H44N2, 889.09;
found, 888.8 (M+). Elemental anal. calcd (%) for C68H44N2: C, 91.86; H,
4.99; N, 3.15; Found: C, 91.86, H, 4.50, N, 3.14.
1,3-Bis(9-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-9H-fluoren-9-yl)
benzene (DTCPFB): DTCPFB was prepared as per DCPFB using 3,6-di-tert-
butyl-9H-carbazole to replace 9H-carbazole. 1H NMR (400 MHz,
CDCl3, δ): 8.11 (d, J = 1.4 Hz, 4H), 7.80 (d, J = 7.3 Hz, 4H), 7.55 (s,
1H), 7.40 (s, 4H), 7.39−7.38 (m, 9H), 7.36−7.35 (m, 5H), 7.32 (t,
J = 7.2 Hz, 7H), 7.29 (s, 2H), 7.02 (m, 1H), 6.98−6.96 (m, 2H), 1.43
(s, 36H). 13C NMR (400 MHz, CDCl3, δ): 150.83, 145.81, 144.38, 142.73,
140.15, 139.07, 136.62, 129.46, 127.75, 127.67, 126.11, 125.74, 123.42,
123.24, 120.26, 116.13, 109.18, 65.20, 34.63, 31.94. MS (MALDI-TOF):
m/z calcd. for C84H76N2, 1112.6; found, 1112.7 (M+). Elemental anal.
calcd (%) for C84H76N2: C, 90.60; H, 6.88; N, 2.52 Found: C, 90.58; H,
6.89; N, 2.51.
[13] S. C. Lo, R. E. Harding, C. P. Shipley, S. G. Stevenson, P. L. Burn,
I. D. W. Samuel, J. Am. Chem. Soc. 2009, 131, 16681.
[14] S. J. Lee, J. S. Park, M. Song, I. A. Shin, Y. I. Kim, J. W. Lee,
J. W. Kang, Y. S. Gal, S. Kang, J. Y. Lee, S. H. Jung, H. S. Kim,
M. Y. Chae, S. H. Jin, Adv. Funct. Mater. 2009, 19, 2205.
[15] Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita, M. A. Kakimoto, Adv. Funct. Mater. 2008, 18, 584.
[16] C. Huang, C. G. Zhen, S. P. Su, K. P. Loh, Z. K. Chen, Org. Lett.
2005, 7, 391.
[17] A. W. Freeman, S. C. Koene, P. R. L. Malenfant, M. E. Thompson,
J. M. J. Fréchet, J. Am. Chem. Soc. 2000, 122, 12385.
[18] J. Q. Ding, J. Gao, Y. X. Cheng, Z. Y. Xie, L. X. Wang, D. G. Ma,
X. B. Jing, F. S. Wang, Adv. Funct. Mater. 2006, 16, 575.
[19] A. Adronov, J. M. J. Fréchet, Chem. Commun. 2000, 1701.
[20] D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska,
S. H. Chen, L. J. Rothberg, Chem. Mater. 2002, 14, 1332.
[21] A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka,
D. D. C. Bradley, M. Koeberg, J. Am. Chem. Soc. 2004, 126, 13695.
©
3134 wileyonlinelibrary.com
2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Funct. Mater. 2010, 20, 3125–3135