1922
F. Tozzi et al.
LETTER
(4) (a) Hollinshead, D. M.; Howell, S. C.; Ley, S. V.; Mahon,
M.; Ratcliffe, N. M.; Worthington, P. A. J. Chem. Soc.,
Perkin Trans. 1 1983, 1579. (b) Ley, S. V.; Sternfeld, F.;
Taylor, S. Tetrahedron Lett. 1987, 28, 225. (c) Ley, S. V.;
Sternfeld, F. Tetrahedron Lett. 1988, 29, 5305.
(9) Jin, Z. Nat. Prod. Rep. 2005, 22, 111.
(10) Schwartz, M. A.; Holton, R. A. J. Am. Chem. Soc. 1970, 92,
1090.
(11) Preparation data X-ray structure file reference: CCDC
770222. See Supporting Information for full experimental
details and characterisation.
(12) Alumina (neutral and basic) and Florisil were also used as
well as several basic ion exchange resins with a catch and
release procedure although these showed no benefits in
terms of isolated yield or purities.
(d) Baxendale, I. R.; Ernst, M.; Krahnert, W.-R.; Ley, S. V.
Synlett 2002, 1641. (e) Baxendale, I. R.; Griffith-Jones,
C. M.; Ley, S. V.; Tranmer, G. K. Synlett 2006, 427.
(5) (a) Pandey, G.; Muralikrishna, C.; Bhalerao, U. T.
Tetrahedron 1989, 45, 6867. (b) Sugumaran, M.; Dali, H.;
Kundzicz, H.; Semensi, V. Bioorg. Chem. 1989, 17, 443.
(c) Bhalerao, U. T.; Murali Krishna, C.; Pandey, G. J. Chem.
Soc., Chem. Commun. 1992, 1176. (d) Land, J. E.;
Ramsden, C. A.; Riley, P. A.; Yoganathan, G. Org. Biomol.
Chem. 2003, 1, 3120. (e) Gademann, K.; Bethuel, Y.;
Locher, H. H.; Hubschwerlen, C. J. Org. Chem. 2007, 72,
8361. (f) Leutbecher, H.; Hajdok, S.; Braunberger, C.;
Neumann, M.; Mika, S.; Conrad, J.; Beifuss, U. Green
Chem. 2009, 11, 676.
(6) For reviews and recent prospects, see: (a) Burton, S. G.
Catal. Today 1994, 22, 459. (b) Solomon, E. I.; Chen, P.;
Metz, M.; Lee, S.; Palmer, A. E. Angew. Chem. Int. Ed.
2001, 40, 4570. (c) Veitch, N. C. Phytochemistry 2004, 65,
249.
(7) (a) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley,
S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006,
2566. (b) Baxendale, I. R.; Ley, S. V. Curr. Org. Chem.
2005, 9, 1521. (c) Baxendale, I. R.; Ley, S. V. Ind. Eng.
Chem. Res. 2005, 44, 8588. (d) Baxendale, I. R.; Ley, S. V.
Curr. Org. Chem. 2005, 9, 1521. (e) Baxendale, I. R.; Ley,
S. V.; Nesi, M.; Piutti, C. Tetrahedron 2002, 58, 6285.
(f) Baxendale, I. R.; Ley, S. V.; Piutti, C. Angew. Chem. Int.
Ed. 2002, 41, 2194. (g) Ley, S. V.; Baxendale, I. R.;
Brusotti, G.; Caldarelli, M.; Massi, A.; Nesi, M. Farmaco
2002, 57, 321.
(13) Preparation data X-ray structure file reference: CCDC
770223. See Supporting Information for full experimental
details and characterisation.
(14) Appukkuttan, P.; Van der Eycken, E. Eur. J. Org. Chem.
2008, 5867.
(15) In one of the rotamers H-6a and the H-6b are, respectively,
located at d = 4.80 and 2.99 ppm are in an AB system with a
coupling constant of 13.5 Hz. The high shift of H-6a is due
to its position in the plane of the carbonyl. In the minor
rotamer they are in the same system with a coupling constant
of 14.5 Hz but at d = 4.40 and 3.40 ppm, respectively.
Moreover, COSY experiment showed that the protons H-9a
and H-8b, and the H-9b and H-8a do not, respectively,
couple because of their ca. 90° dihedral angle, thus
confirming the TBC conformation. See also: Landais, Y.;
Robin, J. Tetrahedron 1992, 48, 7185.
(16) Evidence of the indirect formation of the catecholic
intermediate substrate responsible for the autoactivation
kinetics of tyrosinase. See: Cooksey, C. J.; Garratt, P. J.;
Land, E. J.; Pavel, S.; Ramsden, C. A.; Riley, P. A.; Smit, N.
P. M. J. Biol. Chem. 1997, 272, 26226.
(17) Cresolase activity is the hydroxylation of phenols while
catecholase is reserved for the oxidation of catechols.
(18) Sànchez-Ferrer, A.; Rodriguez-López, J. N.; Garcia-
Cànovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta
1995, 1247, 1.
(8) Szewczyk, J. J. Heterocycl. Chem. 1988, 25, 1809.
Synlett 2010, No. 13, 1919–1922 © Thieme Stuttgart · New York