couplings, as well as the so-called tunneling energy gap De that
Notes and references
may be approximated as the donor–bridge energy gap:28
1 H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci. U. S. A., 2005,
102, 3534.
2 W. B. Davis, W. A. Svec, M. A. Ratner and M. R. Wasielewski,
Nature, 1998, 396, 60.
3 B. Giese, Acc. Chem. Res., 2000, 33, 631.
4 C. S. Wang, A. S. Batsanov, M. R. Bryce, S. Martin, R. J. Nichols,
S. J. Higgins, V. M. Garcia-Suarez and C. J. Lambert, J. Am.
Chem. Soc., 2009, 131, 15647.
ꢀ
ꢁ
nꢁ1
hDb hbb
HDA
¼
hbA
ð2Þ
De De
In dyad 2, hbb is likely to be similar for xy–xy and xy–dmb
contacts since the expected equilibrium torsion angles between
these para-disubstituted units are similar. However, at the
central dmb unit, De is locally drastically lower, leading to
significantly enhanced overall donor–acceptor coupling with
respect to the situation in dyad 1.
5 M. Wielopolski, C. Atienza, T. Clark, D. M. Guldi and N. Martı
Chem. Eur. J., 2008, 14, 6379.
6 J. Fortage, E. Goransson, E. Blart, H. C. Becker,
L. Hammarstrom and F. Odobel, Chem. Commun., 2007, 4629.
´
n,
¨
7 R. Huber, M. T. Gonza
V. Horhoiu, M. Mayor, M. R. Bryce, C. S. Wang, R. Jitchati,
´
lez, S. Wu, M. Langer, S. Grunder,
In dyad 3, the overall Re to PTZ hole transfer is
equally slow as in dyad 1 despite the presence of a central
tetramethoxybenzene (tmb) unit. Free tmb is oxidized at an
electrochemical potential of 0.81 V vs. SCE (Scheme 3 and
ESIw),18 and therefore our initial expectation was that this
would permit Re to tmb hole transfer and enable an efficient
two-step hopping process for the overall Re to PTZ charge
transfer. However, the slow MLCT quenching rate observed
for this dyad indicates that our expectation is not fulfilled.
Moreover, nanosecond transient absorption spectroscopy fails
C. Schonenberger and M. Calame, J. Am. Chem. Soc., 2008, 130, 1080.
8 Q. Lu, K. Liu, H. M. Zhang, Z. B. Du, X. H. Wang and
F. S. Wang, ACS Nano, 2009, 3, 3861.
9 B. Albinsson, M. P. Eng, K. Pettersson and M. U. Winters, Phys.
Chem. Chem. Phys., 2007, 9, 5847.
10 O. S. Wenger, Coord. Chem. Rev., 2009, 253, 1439.
11 M. Cordes and B. Giese, Chem. Soc. Rev., 2009, 38, 892.
12 C. Shih, A. K. Museth, M. Abrahamsson, A. M. Blanco-
Rodriguez, A. J. Di Bilio, J. Sudhamsu, B. R. Crane,
K. L. Ronayne, M. Towrie, A. Vlcek, J. H. Richards,
J. R. Winkler and H. B. Gray, Science, 2008, 320, 1760.
13 M. Cordes, A. Kottgen, C. Jasper, O. Jacques, H. Boudebous and
¨
B. Giese, Angew. Chem., Int. Ed., 2008, 47, 3461.
14 M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hanisch,
¨
¨
+
to provide evidence for the tmbꢀ radical cation. A likely
F. Weigend, F. Evers, H. B. Weber and M. Mayor, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 8815.
15 L. Esaki, Science, 1974, 183, 1149.
16 G. V. Nazin, S. W. Wu and W. Ho, Proc. Natl. Acad. Sci. U. S. A.,
2005, 102, 8832.
17 M. E. Walther and O. S. Wenger, ChemPhysChem, 2009, 10, 1203.
18 O. Nicolet and E. Vauthey, J. Phys. Chem. A, 2002, 106, 5553.
19 K. S. Schanze, D. B. MacQueen, T. A. Perkins and L. A. Cabana,
Coord. Chem. Rev., 1993, 122, 63.
20 D. Hanss and O. S. Wenger, Inorg. Chem., 2008, 47, 9081.
21 D. Hanss and O. S. Wenger, Inorg. Chem., 2009, 48, 671.
reason for these observations is that the electronic coupling of
tmb to its neighboring p-xylene bridge units is exceptionally
weak. The four-fold methoxy-substituted tmb moiety is
sterically much more demanding than the xylene or dmb
units,29 a fact that becomes manifest also in low yields
obtained for the C–C coupling reactions that involve the
tmb building block (see ESIw). A larger equilibrium torsion
angle between tmb and p-xylene compared to the respective
angles in dmb–xy and xy–xy contacts will lead to (locally)
weaker electronic coupling (locally smaller hbb),30–33 a fact that
does not reflect from the simple (reduction potential) diagram
of Scheme 3. At any rate, the experimental evidence indicates
22 S. A. Alkaitis, G. Beck and M. Gratzel, J. Am. Chem. Soc., 1975,
97, 5723.
¨
23 V. Balzani, Electron transfer in chemistry, VCH Wiley, Weinheim,
2001.
24 M. T. Indelli, C. Chiorboli, L. Flamigni, L. De Cola and
F. Scandola, Inorg. Chem., 2007, 46, 5630.
+
that PTZꢀ is the final photoproduct (Fig. 2a), and rapid
quenching of the Re MLCT state is not observed (Fig. 1).
Thus, there is no benefit from replacing the central p-xylene
unit by a tetramethoxybenzene spacer, and it appears that in
dyad 3, hole tunneling occurs from the metal complex directly
to PTZ.
25 B. Schlicke, P. Belser, L. De Cola, E. Sabbioni and V. Balzani,
J. Am. Chem. Soc., 1999, 121, 4207.
26 D. Hanss, M. E. Walther and O. S. Wenger, Coord. Chem. Rev,
2010, DOI: 10.1016/j.ccr.2009.10.024.
27 W. B. Connick, A. J. Di Bilio, M. G. Hill, J. R. Winkler and
H. B. Gray, Inorg. Chim. Acta, 1995, 240, 169.
28 H. M. McConnell, J. Chem. Phys., 1961, 35, 508.
29 C. Vande Velde, E. Bultinck, K. Tersago, C. Van Alsenoy and
F. Blockhuys, Int. J. Quantum Chem., 2007, 107, 670.
30 A. C. Benniston and A. Harriman, Chem. Soc. Rev., 2006, 35, 169.
In conclusion, manipulation of tunneling barrier shapes in
molecular wires is possible through variation of the reduction
potentials of individual bridging units, but this approach to
controlling long-range charge transfer rates appears to reach
its limitations when sterically demanding building blocks are
involved.
31 A. Mishchenko, D. Vonlanthen, V. Meded, M. Burkle, C. Li,
¨
I. V. Pobelov, A. Bagrets, J. K. Viljas, F. Pauly, F. Evers,
M. Mayor and T. Wandlowski, Nano Lett., 2010, 10, 156.
32 D. Hanss and O. S. Wenger, Eur. J. Inorg. Chem., 2009, 3778.
33 M. E. Walther, J. Grilj, D. Hanss, E. Vauthey and O. S. Wenger,
Eur. J. Inorg. Chem., 2010, DOI: 10.1002/ejic.201000645.
Funding from the Swiss National Science foundation
through grant number PP002-110611 is acknowledged.
c
7036 Chem. Commun., 2010, 46, 7034–7036
This journal is The Royal Society of Chemistry 2010