Catalysts for Enantioselective Sulfoxidation Reactions
[8]
[9]
For recent examples of biocatalytic sulfoxidation reactions, see:
a) N. M. Kamerbeek, J. J. M. W. Fraaije, D. B. Janssen, Appl.
Environ. Microbiol. 2003, 69, 419–426; b) M. T. Reetz, F. Dali-
gault, B. Brunner, H. Hinrichs, A. Deege, Angew. Chem. Int.
Ed. 2004, 43, 4078; c) G. de Gonzalo, P. Torres, E. Daniel, G.
Ottolina, M. W. Fraaije, G. Carrea, Tetrahedron: Asymmetry
2005, 16, 3077–3083; d) A. Rioz-Martinez, F. R. Bisogno, C.
Rodriguez, G. de Gonzalo, I. Lavandera, P. Torres, M. W.
Fraaije, V. Gotor, Org. Biomol. Chem. 2010, 8, 1431–1437.
For recent examples of enantioselective H2O2 or O2 sulfoxid-
ation reactions catalysed by metal-ion complexes, see: a) K. P.
Bryliakov, E. P. Talsi, Eur. J. Org. Chem. 2008, 3369–3376; b)
A. Thompson, J. R. Garabatos-Perera, H. M. Gillis, Can. J.
Chem. 2008, 86, 676–681; c) A. Lattanzi, S. Piccirillo, A. Scet-
tri, Adv. Synth. Catal. 2007, 349, 357–363; d) A. Pordea, M.
Creus, J. Panek, C. Duboc, D. Mathis, M. Novic, T. R. Ward,
J. Am. Chem. Soc. 2008, 130, 8085–8088; e) J. Legros, C. Bolm,
Angew. Chem. Int. Ed. 2003, 42, 5487–5489; f) J. Legros, C.
Bolm, Angew. Chem. Int. Ed. 2004, 43, 4225–4228; g) J. Legros,
C. Bolm, Chem. Eur. J. 2005, 11, 1086–1092; h) K. Matsumoto,
T. Yamaguchi, T. Katsuki, Chem. Commun. 2008, 1704–1704;
i) A. Scarso, G. Strukul, Adv. Synth. Catal. 2005, 347, 1227–
1234; j) I. Lippold, J. Becher, D. Klemm, W. Plass, J. Mol.
Catal. A 2009, 299, 12–17; k) P. Suresh, S. Srimurugan, B.
Babu, N. H. Pati, Tetrahedron: Asymmetry 2007, 18, 2820; l) Y.
Wu, J. Liu, X. Li, A. S. C. Chan, Eur. J. Org. Chem. 2009,
2607–2610; m) E. Kiromichi, T. Katsuki, Synlett 2008, 10,
1543–1546.
at –20 °C. A 30% aqueous hydrogen peroxide solution (10.5 µL,
0.1 mmol) was added and the reaction mixture was stirred at
–20 °C. The reaction was monitored by HPLC. When 70% conver-
sion was reached, the reaction was quenched with 5% aqueous so-
dium bisulfite (5 mL). Methanol was carefully evaporated and the
remaining aqueous solution was extracted with dichloromethane.
After the evaporation of the solvents, the residue was purified by
chromatography (ethyl acetate/hexane, 1:1). The enantiomeric ra-
tios were determined by HPLC analysis on a Chiralcel OD column
(hexane/2-PrOH, 9:1) or by 1H NMR in the presence of (R)-N-(3,5-
dinitrobenzoyl)-1-phenylethan-1-amine as a chiral shift reagent.[20]
Supporting Information (see also the footnote on the first page of
this article): Experimental details for the synthesis of 3-alkyl-6-
chlorouracils, 1H NMR spectra of 2b, 3a and 3b, chromatogram of
the racemic mixture of flavin 3b on a chiral HPLC column, CD
spectra of (+)-3b and (–)-3b and the kinetics of the H2O2 sulfoxid-
ation reactions catalysed by flavinium salt 2b.
Acknowledgments
The authors wish to thank the Czech Science Foundation (Grant
No. 203/07/1246) for financial support.
[1] a) I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651–3705;
b) J. L. García Ruano, J. Alemán, M. B. Cid, M. A. Fernández-
Ibañez, M. C. Maestro, M. R. Martín, A. M. Martín-Castro,
in: Organosulfur Chemistry in Asymmetric Synthesis (Eds.: T.
Toru, C. Bolm), Wiley-VCH, Weinheim, 2008, pp. 55–159; c)
M. C. Carreño, G. H. Hernández-Torres, M. Ribagorda, A.
Urbano, Chem. Commun. 2009, 6129–6144; d) H. Pellissier,
Tetrahedron 2006, 62, 5559–5601.
[2] a) K. S. Jain, A. K. Shah, J. Bariwal, S. M. Shelke, A. P. Kale,
J. R. Jagtap, A. V. Bhosale, Bioorg. Med. Chem. 2007, 15, 1181–
1205; b) A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Phar-
maceutical Substances, 5th ed., Thieme, Stuttgart, 2009, p. 911;
c) A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceu-
tical Substances, 5th ed., Thieme, Stuttgart, 2009, p. 25.
[3] a) H. Murakami, in: Topics in Current Chemistry, vol. 269
(Eds.: K. Sakai, N. Hirayama, R. Tamura), Springer, Berlin,
2006, pp. 273–299; b) A. N. Collins, G. N. Sheldrake, J. Crosby
(Eds.), Chirality in Industry, Wiley, Chichester, 1997; c) I. Ag-
ranat, H. Caner, Drug Discovery Today 1999, 4, 313–321, and
references cited therein.
[10]
Organocatalytic systems for sulfoxidation reactions (including
asymmetric ones) are reviewed in: a) J.-E. Bäckvall, in: Modern
Oxidation Methods (Ed.: J.-E. Bäckvall), Wiley-VCH,
Weinheim, 2004, pp. 193–222; b) A. Armstrong, in: Enantiose-
lective Organocatalysis (Ed.: P. I. Dalko), Wiley-VCH,
Weinheim, 2007, pp. 403–424.
Applications of flavinium salts in catalysis are reviewed in: a)
F. G. Gelalcha, Chem. Rev. 2007, 107, 3338–3361; b) I. Yasushi,
N. Takeshi, Chem. Rec. 2007, 7, 354–361.
[11]
[12]
For recent papers concerning H2O2 sulfoxidation reactions cat-
alysed by flavinium salts, see: a) Y. Imada, T. Ohno, T. Naota,
Tetrahedron Lett. 2007, 48, 937–939; b) L. Baxová, R. Cibulka,
F. Hampl, J. Mol. Catal. A 2007, 277, 53–60; c) R. Cibulka, L.
Baxová, H. Dvorˇáková, F. Hampl, P. Ménová, V. Mojr, B.
Plancq, S. Sayin, Collect. Czech. Chem. Commun. 2009, 74,
ˇ
973–993; d) J. Zurek, R. Cibulka, H. Dvorˇáková, J. Svoboda,
Tetrahedron Lett. 2010, 51, 1083–1086; e) B. J. Marsh, D. R.
Carbery, Tetrahedron Lett. 2010, 51, 2362–2365.
[4] a) C. M. Spencer, D. Faulds, Drugs 2000, 60, 321–329; b) A. M.
Rouhi, Chem. Eng. News 2004, 82, 47–62; c) S. Caron, R. W.
Dugger, S. G. Ruggeri, J. A. Ragan, D. H. R. Ripin, Chem. Rev.
2006, 106, 2943–2989; d) H. J. Federsel, M. Larsson in Asym-
metric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions (Eds.: H. U. Blaser, E. Schmidt), Wiley-VCH,
Weinheim, 2004, pp. 413–436.
[5] a) M. Russo, Clinical Medicine: Ther. 2009, 415–432, and refer-
ences cited therein; b) A. Osorio-Lozada, T. Prisinzano, H. F.
Olivo, Tetrahedron: Asymmetry 2004, 15, 3811–3815.
[13]
[14]
For selected examples of H2O2 sulfoxidation reactions cata-
lysed by flavinium salts, see: a) S.-I. Murahashi, T. Oda, Y.
Masui, J. Am. Chem. Soc. 1989, 111, 5002–5003; b) A. B. E.
Minidis, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 297–302; c) A. A.
Lindén, L. Krüger, J.-E. Bäckvall, J. Org. Chem. 2003, 68,
5890–5896; d) A. A. Lindén, N. Hermanns, S. Ott, L. Krüger,
J.-E. Bäckvall, Chem. Eur. J. 2005, 11, 112–119.
a) S. Shinkai, T. Yamaguchi, O. Manabe, F. Toda, J. Chem.
Soc., Chem. Commun. 1988, 1399–1401; b) S.-I. Murahashi,
Angew. Chem. Int. Ed. Engl. 1995, 34, 2443–2565.
[6] a) J. Legras, J. R. Dehli, C. Bolm, Adv. Synth. Catal. 2005, 347,
19–31; b) H. B. Kagan in Catalytic Asymmetric Synthesis (Ed.:
I. Ojima), Wiley-VCH, Weinheim, 2005; c) H. B. Kagan, T. O.
Luukas, Catalytic Asymmetric Sulfide Oxidations, vol. 2,
Wiley-VCH, Weinheim, 2005; d) K. P. Bryliakov, E. P. Talsi,
Curr. Org. Chem. 2008, 12, 386–404; e) K. Kaczorowska, Z.
Kolarska, M. Mitka, P. Kowalski, Tetrahedron 2005, 61, 8315–
8327; f) H. B. Kagan in Organosulfur Chemistry in Asymmetric
Synthesis (Eds.: T. Toru, C. Bolm), Wiley-VCH, Weinheim,
2008, pp. 1–29.
[7] a) C. L. Hill, Nature 1999, 401, 436; b) C. L. Hill, Angew.
Chem. Int. Ed. 2004, 43, 402–404; c) R. A. Sheldon, I. W. C. E.
Arends, U. Hanefeld, Green Chemistry and Catalysis, Wiley-
VCH, Weinheim, 2007.
[15]
[16]
S.-I. Murahashi, S. Ono, Y. Imada, Angew. Chem. Int. Ed.
2002, 41, 2366–2368.
a) H. Waldmann, S. Back, Justus Liebigs Ann. Chem. 1940,
545, 52–58; b) L. F. Fieser, A. M. Seligman, J. Am. Chem. Soc.
1939, 61, 136–142; c) R. C. Fuson, E. A. Cleveland, Org. Synth.
1955, Coll. Vol. III, 339–340.
S. Vyskocil, L. Meca, I. Tislerova, I. Cisarova, M. Polasek,
S. R. Harutyunyan, Y. N. Belokon, R. M. J. Stead, L. Farrugia,
S. C. Lockhart, W. L. Mitchell, P. Kocovsky, Chem. Eur. J.
2002, 8, 4633–4648.
a) G. Bruckmann, S. D. Isaacs, J. Am. Chem. Soc. 1949, 71,
390–392; b) T. Nagamatsu, H. Yamasaki, F. Yoneda, Heterocy-
cles 1994, 37, 1147–1164.
[17]
[18]
Eur. J. Org. Chem. 2010, 5217–5224
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5223