Communication
ChemComm
the bisguanidinium salt and substrates in the transition state. Notes and references
When 4-MeO substituted cyclohexadienone was used instead
1 (a) K. Matsuzaki, H. Tahara, J. Inokoshi and H. Tanaka, J. Antibiot.,
1998, 51, 1004; (b) G. Bringmann, G. Lang and T. A. M. Gulder,
Tetrahedron, 2005, 61, 7252; (c) Y.-J. Kwon, M.-J. Sohn, C.-J. Zheng
and W.-G. Kim, Org. Lett., 2007, 9, 2449.
2 (a) A. M. Harned and K. A. Volp, Nat. Prod. Rep., 2011, 28, 1790;
(b) J. J. Meng, X. H. Wang, D. Xu, X. X. Fu, X. P. Zhang, D. W. Lai,
L. G. Zhou and G. Z. Zhang, Molecules, 2016, 21, 715.
3 (a) J. Z. Zhang, J. Wu, Z. W. Yin, H. S. Zeng, K. Khanna, C. Huc and
S. P. Zheng, Org. Biomol. Chem., 2013, 11, 2939; (b) M. G. Edwards, M. N.
Kenworthy, R. R. A. Kitson, A. Perry, M. S. Scott, A. C. Whitwood and
R. J. K. Taylor, Eur. J. Org. Chem., 2008, 4769; (c) S. Takizawa, T. M.-N.
Nguyen, A. Grossmann, D. Enders and H. Sasai, Angew. Chem., Int. Ed.,
2012, 51, 5423.
4 R. T. Aburto, K. A. Kalstabakken, K. A. Volp and A. M. Harned, Org.
Biomol. Chem., 2011, 9, 7849.
5 K. A. Volp and A. M. Harned, Org. Lett., 2011, 13, 4486.
6 W. J. Yao, X. W. Dou, S. Wen, J. E. Wu, J. J. Vittal and Y. X. Lu, Nat.
Commun., 2016, 7, 13024.
7 (a) B. M. Trost and K. Dogra, J. Am. Chem. Soc., 2002, 124, 7256;
(b) M. Terada, K. Moriya, K. Kanomata and K. Sorimachi, Angew.
Chem., Int. Ed., 2011, 50, 12586; (c) P. P. de Castro, A. G. Carpanez
and G. W. Amarante, Chem. – Eur. J., 2016, 22, 10294; (d) M. Zhang,
C.-J. Yu, J.-Q. Xie, X.-D. Xun, W.-S. Sun, L.-A. Hong and R. Wang,
Angew. Chem., Int. Ed., 2018, 57, 4921.
8 (a) G.-F. Li, W.-S. Sun, J.-Y. Li, F.-J. Jia, L. Hong and R. Wang, Chem.
Commun., 2015, 51, 11280; (b) X.-Y. Yu, J.-R. Chen, Q. Wei,
H.-G. Cheng, Z.-C. Liu and W.-J. Xiao, Chem. – Eur. J., 2016, 22, 6774;
(c) C. Ma, J.-Y. Zhou, Y.-Z. Zhang, G.-J. Mei and F. Shi, Angew. Chem., Int.
Ed., 2018, 57, 5398; for our previous study relating to guanidine-amide
promoted reactions with azlactones, see: (d) S. X. Dong, X. H. Liu,
X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin and X. M. Feng,
J. Am. Chem. Soc., 2010, 132, 10650; (e) S. X. Dong, X. H. Liu, Y. L. Zhang,
L. L. Lin and X. M. Feng, Org. Lett., 2011, 13, 5060; ( f ) K. R. Yu, X. H. Liu,
X. B. Lin, L. L. Lin and X. M. Feng, Chem. Commun., 2015, 51, 14897;
(g) Q. Zhang, S. S. Guo, J. Yang, K. R. Yu, X. M. Feng, L. L. Lin and
X. H. Liu, Org. Lett., 2017, 19, 5826; (h) S. Ruan, X. B. Lin, L. H. Xie,
L. L. Lin, X. M. Feng and X. H. Liu, Org. Chem. Front., 2018, 5, 32.
9 For selected examples on catalytic asymmetric [3 + 2] or [3 + 3]
cyclizations of p-quinol analogues: (a) L. H. Liao, C. Shu, M. M. Zhang,
Y. J. Liao, X. Y. Hu, Y. H. Zhang, Z. J. Wu, W. C. Yuan and X. M. Zhang,
Angew. Chem., Int. Ed., 2014, 53, 10471; (b) C.-S. Wang, R.-Y. Zhu,
Y.-C. Zhang and F. Shi, Chem. Commun., 2015, 51, 11798; (c) X.-X. Sun,
H.-H. Zhang, G.-H. Li, L. Meng and F. Shi, Chem. Commun., 2016,
52, 2968.
of p-quinol 1b, the corresponding Michael reaction did not
occur. This indicates that the synergic lactonization step might
accelerate the initial conjugation addition step. With these
experimental observations in hand, we proposed a bifunctional
catalyst model that is consistent with the significant levels of
diastereo- and enantioselectivity. Fig. 1 shows catalyst–substrate
interaction with the guanidinium hemisalt maintaining its con-
formation as the crystal. The basic guanidine unit accelerates the
enolization of azlactone, contacting the formed intermediate as a
hydrogen-acceptor; meanwhile the vicinal amide bonds to the
other oxygen atom via H-bonding. The guanidinium salt and
neighboring amide provide double hydrogen-bonds to contact
the carbonyl group of p-quinol 1a. An intermolecular conjugate
addition between azlactone and p-quinol might take place via a
Re–Re face contact. The phenyl group and cyclohexyl group
underneath raise steric hindrance to discriminate the para-
substituents of p-quinol, thus desymmetrization of p-quinol
occurs. Next, the OH group attacks the carbonyl group of the
azlactone, performing lactonization to give 3-amino-benzofuran-2,5-
dione (3R,3aS,7aS)-3aa.
In summary, we have developed a highly diastereo- and
enantioselective addition/lactonization of azlactones to p-quinols.
The generation of 3-amino-benzofuran-2,5-diones bearing three
stereogenic centers serves to synthesize potential biologically active
compounds for building non-natural sorbicillactone A homologue
libraries. Our results include the study of azlactones derived from
different amino acids and aldehydes, and prochiral p-quinols
containing different para-substituents, revealing mechanistic con-
sequences. From the examination of the crystal structure of the
bisguanidinium hemisalt, we also disclosed that the catalyst works
as a bifunctional catalyst and bonds the reactants through multiple
hydrogen-bonds. The catalytic principle may be extended equally
well to other classes of asymmetric organocatalysis. Further
application of these kinds of catalysts to other reactions is
underway.
10 For selected reviews on desymmetrization of prochiral dienone:
´
(a) G. Maertens, M.-A. Menard and S. Canesi, Synthesis, 2014,
1573; (b) K. A. Volp and A. M. Harned, Tetrahedron, 2014, 70, 9571.
11 For selected examples: (a) M. T. Corbett and J. S. Johnson, Chem.
Sci., 2013, 4, 2828; (b) S. N. Reddy, V. R. Reddy, S. Dinda,
J. B. Nanubolu and R. Chandra, Org. Lett., 2018, 20, 2572.
12 (a) W. D. Cao, X. H. Liu and X. M. Feng, Chin. Chem. Lett., 2018,
29, 1201; (b) S. X. Dong, X. M. Feng and X. H. Liu, Chem. Soc. Rev.,
2018, 47, 8525.
We thank Prof. Zhihua Mao of SiChuan University for single
crystal analysis. We appreciate the National Natural Science
Foundation of China (No. 21625205, 21332003), and National
Program for Support of Top-Notch Young Professionals for
financial support.
˜
13 Y. Zhou, J. Wang, Z. N. Gu, S. N. Wang, W. Zhu, J. L. Acena,
V. A. Soloshonok, K. Izawa and H. Liu, Chem. Rev., 2016, 116, 422.
14 K. A. Volp and A. M. Harned, in Strategies and Tactics in Organic Synthesis,
ed. M. Harmata, Elsevier, London, 2015, vol. 11, pp. 253–308.
15 CCDC 1836787 (3aa), 1866762 (3bc), 1847525 (BG-1ÁHBPh4), and
1851705 (5bc)†.
Conflicts of interest
There are no conflicts to declare.
16 X. Sun, J. P. Gao and Z. Y. Wang, J. Am. Chem. Soc., 2008, 130, 8130.
90 | Chem. Commun., 2019, 55, 87--90
This journal is ©The Royal Society of Chemistry 2019