Organometallics
ARTICLE
(6) (a) Jackstell, R.; Gꢀomez Andreu, M.; Frisch, A.; Selvakumar, K.;
Zapf, A.; Klein, H.; Spannenberg, A.; R€ottger, D.; Briel, O.; Karch, R.;
Beller, M. Angew. Chem., Int. Ed. 2002, 41, 986–989.(b) Clement, N. D.;
Rotaboul, L.; Grotevendt, A.; Jackstell, R.; Beller, M. Chem.—Eur. J.
2008, 14, 7408ꢀ7420, and references therein.
G. Angew. Chem., Int. Ed. 2008, 47, 5411–5414. (d) Han, Y.; Lee, L. J.;
Huynh, H. V. Organometallics 2009, 28, 2778–2786. (e) Melaimi, M.;
Parameswaran, P.; Donnadieu, B.; Frenking, G.; Bertrand, G. Angew.
Chem., Int. Ed. 2009, 48, 4792–4795. (f) Han, Y.; Huynh, H. V. Dalton
Trans. 2011, 40, 2141–2147. (g) Han, Y.; Yuan, D.; Teng, Q.; Huynh,
H. V. Organometallics 2011, 30, 1224–1230.
(7) (a) Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37, 1776–1782.
(b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008,
108, 3351–3378. (c) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91–100.
(d) Raubenheimer, H. G.; Cronje, S. Chem. Soc. Rev. 2008, 37, 1998–2011.
(8) (a) Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L;
Cavallo, L.; Nolan, S. P. Organometallics 2003, 22, 4322–4326. (b) Viciu,
M. S.; Navarro, O.; Germaneau, R. F.; Kelly, R. A.; Sommer, W. J.;
Marion, N.; Stevens, E. D.; Cavallo, L.; Nolan, S. P. Organometallics
2004, 23, 1629–1635. (c) Hahn, E.; Jahnke, M. C. Angew. Chem., Int. Ed.
2008, 47, 3122–3172. (d) Dr€oge, T.; Glorius, F. Angew. Chem., Int. Ed.
2010, 49, 6940–6952. (e) Díez-Gonzꢀalez, S.; Nolan, S. P. Coord. Chem.
Rev. 2007, 251, 874–883. (f) de Frꢀemont, P.; Marion, N.; Nolan, S. P.
Coord. Chem. Rev. 2009, 253, 862–892.
(18) (a) Begtrup, M.; Kristensen, P. A. Acta Chem. Scand. 1969,
23, 2733–2740. (b) Begtrup, M. Acta Chem. Scand. B 1975,
29, 141–144. (c) Begtrup, M. J. Chem. Soc., Chem. Commun.
1975, 334–335. (d) Mathew, P.; Neels, A.; Albrecht, M. J. Am. Chem.
Soc. 2008, 130, 13534–13535. (e) Karthikeyan, T.; Sankararaman, S.
Tetrahedron Lett. 2009, 50, 5834–5837. (f) Nakamura, T.; Ogata, K.;
Fukuzawa, S.-i. Chem. Lett. 2010, 39, 920–922. (g) Lalrempuia, R.;
McDaniel., N. D.; M€uller-Bunz, H.; Bernhard, S.; Albrecht, M. Angew.
Chem., Int. Ed. 2010, 49, 9765–9768. (h) Kilpin, K. J.; Paul, U. S. D.; Lee,
A.-L.; Crowley, J. D. Chem. Commun. 2011, 47, 328–330. (i) Nakamura, T.;
Terashima, T.; Ogata, K.; Fukuzawa, S.-i. Org. Lett. 2011, 13, 620–623. (j)
Poulain, A.; Canseco-Gonzalez, D.; Hynes-Roche, R.; M€uller-Bunz, H.;
Schuster, O.; Stoeckli-Evans, H.; Neels, A.; Albrecht, M. Organometallics
2011, 30, 1021–1029. (k) Prades, A.; Peris, E.; Albrecht, M. Organome-
tallics 2011, 30, 1162–1167. (l) Saravanakumar, R.; Ramkumar, V.;
Sankararaman, S. Organometallics 2011, 30, 1689–1694.
(19) Iglesias, M.; Albrecht, M. Dalton Trans. 2010, 39, 5213–5215.
(20) According to IUPAC, mesoionic compounds are “dipolar five-
(possibly six-) membered heterocyclic compounds in which both the
negative and the positive charge are delocalized, for which a totally
covalent structure cannot be written and which cannot be represented
satisfactorily by any one polar structure. The formal positive charge is
associated with the ring atoms, and the formal negative charge is
associated with ring atoms or an exocyclic nitrogen or chalcogen atom.”
Compendium of Chemical Terminology, 2nd ed.; McNaught, A. D.;
Wilkinson, A, Eds.; Blackwell Scientific: Oxford, 1997; XML on-line
iupac.org/M03842.html].
(9) (a) Gr€undemann, S.; Albrecht, M.; Kovacevic, A.; Faller, J.
W.; Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2002, 2163–2167.
(b) McGuinness, D. S.; Cavell, K. J.; Yates, B. F. Chem. Commun. 2001,
355–356. (c) McGuinness, D. S.; Cavell, K. J.; Yates, B. F.; Skelton, B. W.;
White, A. H. J. Am. Chem. Soc. 2001, 123, 8317–8328.
(10) (a) Voutchkova, A. M.; Appelhans, L. N.; Chianese, A. R.;
Crabtree, R. H. J. Am. Chem. Soc. 2005, 127, 17624–17625.
(b) Voutchkova, A. M.; Feliz, M.; Clot, E.; Eisenstein, O.; Crabtree,
R. H. J. Am. Chem. Soc. 2007, 129, 12834–12846. (c) Wang, H. M. J.; Lin,
I. J. B. Organometallics 1998, 17, 972–975. (d) Lin, J. C. Y.; Huang,
R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem.
Rev. 2009, 109, 3561–3598. (e) Garrisson, J. C.; Youngs, W. J. Chem. Rev.
2005, 105, 3978–4008. (f) Duong, H. A.; Tekavec, T. N.; Arif, A. M.;
Louie, J. Chem. Commun. 2004, 112–113.
(11) (a) Arnold, P. L.; Pearson, S. Coord. Chem. Rev. 2007,
251, 596–609. (b) Albrecht, M. Chem. Commun. 2008, 3601–3610.
(c) Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem.
Rev. 2009, 109, 3445–3478. (d) Albrecht, M. Chimia 2009, 63, 105–110.
For comparisons of the properties of normal, abnormal, and remote
carbenes, see for examples:(e) Heydenrych, G.; von Hopffgarten, M.;
Stander, E.; Schuster, O.; Raubenheimer, H. G.; Frenking, G. Eur. J.
Inorg. Chem. 2009, 1892–1904. (f) Stander-Grobler, E.; Schuster, O.;
Heydenrych, G.; Cronje, S.; Tosh, E.; Albrecht, M.; Frenking, G.;
Raubenheimer, H. G. Organometallics 2010, 29, 5821–5833.
(21) The term “mesoionic carbene” was originally coined by Araki
et al. (refs 16cꢀ16e), unbeknownst to us at the time or our previous
publication (ref 14).
(22) Alder, R. W.; Blake, M. E.; Chaker, L.; Harvey, J. N.; Paolini, F.;
Sch€utz, J. Angew. Chem., Int. Ed. 2004, 43, 5896–5911.
(23) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B; Parameswaran,
P.; Frenking, G.; Bertrand, G. Science 2009, 326, 556–559.
(12) (a) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem.,
Int. Ed. 2010, 49, 8810–8849. (b) Vignolle, J.; Catto€en, X.; Bourissou, D.
Chem. Rev. 2009, 109, 3333–3384.
(13) For reviews, see: (a) Enders, D.; Niemeier, O.; Henseler, A.
Chem. Rev. 2007, 107, 5606–5655. (b) Marion, N.; Diez-Gonzalez, S.;
Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988–3000. (c) Moore, J. L.;
Rovis, T. Carbene Catalysts. Top. Curr. Chem. 2010, 291, 77ꢀ144.
Applications of free MICs in organocatalysis will be reported elsewhere.
(14) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G.
Angew. Chem., Int. Ed. 2010, 49, 4759–4762.
(15) (a) Grundemann, S.; Kovacevic, A.; Albrecht, M.; Faller, J. W.;
Crabtree, R. H. Chem. Commun. 2001, 2274–2275. (b) Grundemann, S.;
Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree, R. H. J. Am. Chem.
Soc. 2002, 124, 10473–10481.
(16) (a) Norris, W. P.; Henry, R. A. Tetrahedron Lett. 1965,
6, 1213–1215. (b) Weiss, R.; Lowack, R. H. Angew. Chem., Int. Ed.
1991, 30, 1162–1163. (c) Araki, S.; Wanibe, Y.; Uno, F.; Morikawa, A.;
Yamamoto, K.; Chiba, K.; Butsugan, Y. Chem. Ber. 1993, 126,
1149–1155. (d) Araki, S.; Yamamoto, K.; Yagi, M.; Inoue, T.; Fukagawa,
H.; Hattori, H.; Yamamura, H.; Kawai, M.; Butsugan, Y. Eur. Chem. Org.
J. 1998, 121–127. (e) Araki, S.; Yokoi, K.; Sato, R.; Hirashita, T.;
Setsune, J.-I. J. Heterocycl. Chem. 2009, 46, 164–171. (f) Jothibasu, R.;
Huynh, H. V. Organometallics 2009, 28, 2505–2511.
(24) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057–3064. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. For a recent
review:(c) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952–3015.
(25) Note that the formation of 1 does not necessarily imply the
transient formation or intermediacy of the corresponding free MIC.
(26) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9,
1809–1811.
(27) For recent examples, see: (a) Mullen, K. M.; Mercurio, J.;
Serpell, C. J.; Beer, P. D. Angew. Chem., Int. Ed. 2009, 48, 4781–4784. (b)
Schulze, B.; Friebe, C.; Hager, M. D.; G€unther, W.; K€ohn, U.; Jahn,
B. O.; G€oris, H.; Schubert, U. S. Org. Lett. 2010, 12, 2710–2713.
(28) (a) Mendoza-Espinosa, D.; Donnadieu, B.; Bertrand, G. J. Am.
Chem. Soc. 2010, 132, 7264–7265. (b) Arduengo, A. J., III; Davidson, F.;
Dias, H. V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha,
T. K. J. Am. Chem. Soc. 1997, 119, 12742–12749. (c) Cole, M. L.; Jones,
C.; Junk, P. C. New J. Chem. 2002, 26, 1296–1303.
(29) Note that the base-induced reactions of alkylated triazolium
salts such as Ca-b(Hþ) provide indirect routes for the preparation of
substituted triazoles that are not directly accessible by CuAAC chemistry
(ref 24). For a related example of preparation of heterocycles that
proceed through the rearrangement of unstable carbenes: Schmidt, A.;
M€unster, N.; Dreger, A. Angew. Chem., Int. Ed. 2010, 49, 2790–2793.
(30) (a) Wirschun, W.; Winkler, M.; Lutz, K.; Jochims, J. C. J. Chem.
Soc., Perkin Trans. 1 1998, 1755–1761. (b) Wirschun, W. J. Prakt. Chem.
1998, 340, 300–308. (c) Al-Masoudi, N.; Hassan, N. A.; Al-Soud, Y. A.;
(17) (a) Han, Y.; Huynh, H. V. Chem. Commun. 2007, 1089–1091.
(b) Han, Y.; Huynh, H. V.; Tan, G. K. Organometallics 2007,
26, 6581–6585. (c) Lavallo, V.; Dyker, C. A.; Donnadieu, B.; Bertrand,
2626
dx.doi.org/10.1021/om200272m |Organometallics 2011, 30, 2617–2627