Page 3 of 4
Journal of the American Chemical Society
zation. Thus, upon subjecting the protected amino acid leucine NꢀPhthꢀLꢀ
We thank the Deutsche Forschungsgemeinschaft (Leibniz Award and SFB
858) and the Humboldt Foundation (B.M.) for generous financial support.
LeuꢀOMe to the C–S bond forming reaction conditions, the SCF3ꢀ
modified leucine was isolated in 68% yield. At present, further research is
ongoing in our group to selectively put SCF3 group into long chain pepꢀ
tides and protein molecules.
1
2
3
4
REFERENCES
(1) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011, 40,
2003.
5
6
7
8
(2) (a) Dangel, B.D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc.
2001, 123, 8149. (b) Das, S.; Incarvito, C. D.; Crabtree, R.H.; Brudvig,
G.W. Science, 2006, 312, 1941. (c) chen, M.S.; White, M.C.; Science,
2007, 318, 783. (d) Liang, C.; Collet, F.; Peillard, F. R.; Müller, P.; Dodd,
R. H.; Dauban, P. J . Am. Chem. Soc. 2008, 130, 343. (e) Dick, A. R.;
Sanford, M. S., Tetrahedron, 2006, 62,2439. (f) Paradine, S. M.; Griffin,
J. R.; Zhao, J.; Petronico, A. L.; Miller, S. M.; C. White, M. Nat. Chem.
2015, 7, 987. (g) Larsen, M. A.; Cho, S. H.; Hartwig, J. J. Am. Chem. Soc.
2016, 138, 762. (h) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.; Chang, S. J.
Am. Chem. Soc. 2014, 136, 4141. (i) Zhu, R.ꢀY.; Tanaka, K.; Li, G.ꢀC.;
He, J.; Fu, H.ꢀY.; Li, S.ꢀH.; Yu, J.ꢀQ. J. Am. Chem. Soc. 2015, 137, 7067.
(j) Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.;
Gaunt, M. J. Nat. Chem. 2015, 7, 1009. (k) Xiong, H. Y.; Besset, T.;
Cahard, D.; Pannecoucke, X. J. Org. Chem. 2015, 80, 4204.
(3) (a) Hegedus, L. S.; Hayashi, T.; Darlington, W. H. J. Am. Chem.
Soc., 1978, 100, 7747. (b) Åkermark, B.; Åkermark, G.; Hegedus, L. S.;
Zetterberg, K. J. Am. Chem. Soc., 1981, 103, 3037. (c) Heumann, A.;
Åkermark, B. Angew. Chem. Int. Ed. 1984, 23, 453. (d) Larock, R. C.;
Hightower, T.R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61,
3584. (e) Labinger, J. A.; Herring, A. M.; Bercaw, J. E. J. Am. Chem. Soc.,
1990, 112, 5628. (f)
Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem. Int. Ed. 1998,
37, 2180. (g) Groves, J .T.; Nemo, T. E.; Myers, R. S.; J. Am. Chem. Soc.,
1979, 101, 1032. (h) Battioni, P., Renaud, J. P., Bartoli, J. F., Artiles, M.
R.; Fort, M.; Mansuy, D. J. Am. Chem. Soc., 1988, 110, 8462. (i) Chen,
M. S.; White, M. C. Science 2010, 327, 566. (j) Liu, W.; Groves, J. T. Acc.
Chem. Res. 2015, 48, 1727. (k) Sharma, A.; Hartwig, J. F. Nature 2015,
517, 600.
(4) (a) Cuthbertson, J. D.; MacMillan, D. W.C. Nature 2015, 519, 74.
(b) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W.C. J. Am. Chem. Soc.
2014, 136, 626. (c) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C.
Science 2015, 349, 1532. (d) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.;
Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304
(5) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(6) (a) Honeker, R.; GarzaꢀSanchez, R. A.; Hopkinson, M. N.; Glorius,
F. Chem. Eur. J. 2016, 22, 4395. (b) Candish, L.; Pitzer, L.; Gómezꢀ
Suárez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 3. Direct trifluoromethylthiolation of biologically active mole-
cules. Reaction conditions as shown in Figure 2. Isolated yields are given.
See supplementary material for experimental details. The site selectivities
for reaction at two or multiple C–H bonds were determined by 19F NMR
of the crude reaction mixture.
Finally, our mechanistic hypothesis was supported by quenching studꢀ
ies where no significant quenching interactions were observed between the
excited state of the photocatalyst and either the substrate or the SCF3–
reagent (See Figure S2). Further, considering that a radical chain is inꢀ
volved in many photochemical processes,15,24 one can assume that
phthalimidyl radical is a potential chain carrier in a chain propagation step
either by abstracting a hydrogen atom from benzoic acid or from the
substrate. The first scenario can be ruled out by taking into account the
bond dissociation energies (Figure 1B).5,25 The second possibility cannot
unambiguously be ruled out. However, it is less likely to contribute subꢀ
stantially due to observed high selectivities (vide supra) for tertiary over
secondary C–H bonds in this reaction. The selectivity >20:1 for methine
C–H bond over methylene implies that the majority of the hydrogen atoms
are being abstracted by the benzoyloxy radical26 rather than the
phthalimidyl radical, which is known to be less selective [3o:2o (C(sp3)–H)
~ 4]18b,27. This can further be supported by the low quantum yield (Φ)
measured by chemical actinometry at 415 nm under the reaction condiꢀ
tions; Φ = 1.76. Moreover, determination of the quenching fraction (Q)
revealed that 86% of the photons absorbed by the IrF participate in proꢀ
ductive electron transfer processes.15 Therefore, considering a radical
chain proceeding in this reaction, we calculated the average chain length
according to Yoon by dividing the quantum yield by the quenching fracꢀ
tion (Φ/Q).15 Such calculation turned out to be two. This suggest a very
little contribution of the radical chain processes to the overall product
formation.Visible light promoted photoredox catalysis has recently been
emerged as a tool to accomplish various otherwise synthetically challengꢀ
ing transformations and herein we have thus reported its first use in the
direct catalytic activation of otherwise unactivated C(sp3)–H bonds folꢀ
lowed by its trifluoromethylthiolation. We could envision its potential to
accomplish other direct unactivated C(sp3)–H functionalizations in near
future
(7) (a) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115,
731. (b) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48,
1227. (c) Gregory, L.; Armen, P.; Frederic, R. L. Curr. Top. Med. Chem.
2014, 14, 941. (d) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005,
105, 827.
(8) (a) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. (b)
Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
(9) (a) Sato, D.; Kobayashi, S.; Yasui, H.; Shibata, N.; Toru, T.;
Yamamoto, M.; Tokoro, G.; Ali, V.; Soga, T.; Takeuchi, T.; Suematsu,
M.; Nozaki, T. Int. J. Antimicrob. Agents 2010, 35, 56. (b) Coleman, N.;
Nguyen, H. M.; Cao, Z.; Brown, B. M.; Jenkins, D. P.; Zolkowska, D.;
Chen, Y.ꢀJ.; Tanaka, B. S.; Goldin, A. L.; Rogawski, M. A.; Pessah, I. N.;
Wulff, H. Neurotherapeutics 2015, 12, 234. (c) Houston Jr, M. E.; Vander
Jagt, D. L.; Honek, J. F. Bioorg. Med. Chem. Lett. 1991, 1, 623.
(10) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
(11) (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012,
134, 18237. (b) Ferry, A.; Billard, T.; Bacqué, E.; Langlois, B. R. J.
Fluorine Chem. 2012, 134, 160. (c) Yang, Y.ꢀD.; Azuma, A.; Tokunaga,
E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135,
8782. (d) Xu, C.; Shen, Q. Org. Lett. 2014, 16, 2046. (e) Glenadel, Q.;
Alazet, S.; Baert, F.; Billard, T. Org. Process Res. Dev. 2016, 20, 960.
(12) (a) Chen, C.; Xu, X. H.; Yang, B.; Qing, F. L. Org. Lett. 2014, 16,
3372. (b) Guo, S.; Zhang, X.; Tang, P. Angew. Chem. Int. Ed. 2015, 54,
4065. (c) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J. C.; Liu, C.; Chen, Q.
Y. Angew. Chem. Int. Ed. 2015, 54, 4070.
ASSOCIATED CONTENT
Supporting Information
Supporting Information is available free of charge via the Internet at
Figure S1, S2, S3 Table S1, S2, Experimental procedures and characteriꢀ
zation data.
AUTHOR INFORMATION
Corresponding Author
glorius@uniꢀmuenster.de
(13) (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
2011, 40, 102. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W.C. Chem.
Rev. 2013, 113, 5322.
(14) Hopkinson, M. N.; GómezꢀSuárez, A.; Teders, M.; Sahoo, B.;
Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 4361.
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENT
(15) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
ACS Paragon Plus Environment