A. Fukazawa et al. / C. R. Chimie 13 (2010) 1082–1090
1089
[4] (a) F. Mathey, F. Mercier, F. Nief, J. Fischer, A. Mitschler, J. Am. Chem.
Soc. 104 (1982) 2077;
non-hydrogen atoms were refined anisotropically, and all
hydrogen atoms were placed using AFIX instructions. The
crystal data are as follows: Formula C42H58Cl4P2S4Si2,
FW = 951.04, crystal size 0.14 mm ꢁ 0.07 mm ꢁ 0.02 mm,
(b) M.-O. Bevierre, F. Mercier, L. Ricard, F. Mathey, Angew. Chem. Int.
Ed. Engl. 29 (1990) 655;
(c) E. Deschamps, L. Ricard, F. Mathey, Angew. Chem. Int. Ed. Engl. 33
(1994) 1158.
˚
˚
monoclinic, C2/c (#15), a = 29.333(5) A, b = 8.9161(14) A,
´
[5] (a) C. Hay, D.L. Vilain, V. Deborde, L. Toupet, R. Reau, Chem. Commun.
3
˚
˚
c = 18.380(3) A,
b
= 91.6565(8)8, V = 4805.1(14) A , Z = 4,
(1999) 345;
Dcalcd = 1.315 g
cmꢀ3 = 0.566 mmꢀ1
,
m
,
R1 = 0.0616
´
(b) C. Hay, C. Fischmeister, M. Hissler, L. Toupet, R. Reau, Angew. Chem.
Int. Ed. 39 (2000) 1812;
(c) C. Hay, M. Hissler, C. Fischmeister, J. Rault-Berthelot, L. Toupet, L.
(I > 2s(I)), wR2 ¼ 0:1395 (all data), GOF = 1.108.
Photophysical Properties Measurements. UV/Vis ab-
sorption spectra were recorded on a Shimadzu UV-3510
spectrometer with a resolution of 0.5 nm. Emission spectra
of 1–3 were measured with a Hitachi F-4500 spectrometer
with a resolution of 1 nm. Dilute solutions in degassed
spectral grade solvents in a 1-cm square quartz cell were
used for the absorption and fluorescence measurements.
Absolute fluorescence quantum yields were determined
with a calibrated integrating sphere system C9920-02
(Hamamatsu Photonics). Fluorescence lifetimes were
measured on a Picosecond Fluorescence Lifetime Mea-
surement System C4780 (Hamamatsu Photonics)
equipped with a PLP laser (377 nm for cis- and trans-4,
and 405 nm for 2) or a dye laser (coumarin 307 in ethanol,
for cis- and trans-2). All solvents (purchased from Nakarai
Tesque) were degassed by Ar bubbling for 30 min before
preparation of the sample solution.
Computational Method. The geometry optimizations
of model compounds 1, trans-20, trans-30, and trans-40 were
performed using the Gaussian 03 program [22] at the
B3LYP/6-31G(d) level of theory. The lowest energy
transitions of 1, trans-20, trans-30, and trans-40 were
estimated by TD-DFT calculations at the B3LYP/6-
31G(d)//B3LYP/6-31G(d) level of theory.
´
´
Nyulaszi, R. Reau, Chem. Eur. J. 7 (2001) 4222;
(d) C. Fave, T.-Y. Cho, M. Hissler, C.-W. Chen, T.-Y. Luh, C.-C. Wu, R.
´
Reau, J. Am. Chem. Soc. 125 (2003) 9254;
(e) C. Hay, C. Fave, M. Hissler, J. Rault-Berthelot, R. Re´au, Org. Lett. 5
(2003) 3467;
(f) C. Fave, M. Hissler, T. Ka´rpa´ti, J. Rault-Berthelot, V. Deborde, L.
Toupet, L. Nyula´szi, R. Re´au, J. Am. Chem. Soc. 126 (2004) 6058;
(g) H.-C. Su, O. Fadhel, C.-J. Yang, T.-Y. Cho, C. Fave, M. Hissler, C.-C. Wu,
R. Re´au, J. Am. Chem. Soc. 128 (2006) 983;
´
(h) M. Sebastian, M. Hissler, C. Fave, J. Rault-Berthelot, C. Odin, R. Reau,
Angew. Chem. Int. Ed. 45 (2006) 6152.
[6] (a) S.S.H. Mao, T.D. Tilley, Macromolecules 30 (1997) 5566;
(b) Y. Morisaki, Y. Aiki, Y. Chujo, Macromolecules 36 (2003) 2594.
[7] (a) Y. Matano, T. Nakabuchi, T. Miyajima, H. Imahori, H. Nakano, Org.
Lett. 8 (2006) 5713;
(b) Y. Matano, T. Miyajima, T. Nakabuchi, H. Imahori, N. Ochi, S. Sakaki,
J. Am. Chem. Soc. 128 (2006) 11760;
(c) Y. Matano, T. Miyajima, N. Ochi, T. Nakabuchi, M. Shiro, Y. Nakao, S.
Sakaki, H. Imahori, J. Am. Chem. Soc. 130 (2008) 130, 990;
(d) Y. Matano, M. Nakashima, T. Nakabuchi, H. Imahori, S. Fujishige, H.
Nakano, Org. Lett. 10 (2008) 553;
(e) Y. Matano, T. Nakabuchi, S. Fujishige, H. Nakano, H. Imahori, J. Am.
Chem. Soc. 130 (2008) 16446.
[8] T. Sanji, K. Shiraishi, M. Tanaka, Org. Lett. 9 (2007) 3611.
[9] Y. Makioka, T. Hayashi, M. Tanaka, Chem. Lett. 33 (2004) 44.
[10] R.-F. Chen, R. Zhu, Q.-L. Fan, W. Huang, Org. Lett. 10 (2008) 2913.
[11] (a) T. Baumgartner, T. Neumann, B. Wirges, Angew. Chem. Int. Ed. 43
(2004) 6197;
(b) T. Baumgartner, W. Bergmans, T. Ka´rpa´ti, T. Neumann, M. Nieger, L.
Nyula´ski, Chem. Eur. J. 11 (2005) 4867;
(c) T. Neumann, Y. Dienes, T. Baumgartner, Org. Lett. 8 (2006) 495;
(d) S. Durben, Y. Dienes, T. Baumgartner, Org. Lett. 8 (2006) 5893;
(e) Y. Dienes, S. Durben, T. Ka´rpa´ti, T. Neumann, U. Englert, L. Nyula´ski,
T. Baumgartner, Chem. Eur. J. 13 (2007) 7487;
Acknowledgements
(f) Y. Dienes, U. Englert, T. Baumgartner, Z. Anorg. Alleg. Chem. 635
(2009) 238;
This work was partially supported by Grant-in-Aid
(Nos. 17069011, 19675001, and 20750029) from the
Ministry of Education, Culture, Sports, Science, and
Technology, Japan.
(g) Y. Ren, Y. Dienes, S. Hettel, M. Parvez, B. Hoge, T. Baumgartner,
Organometallics 28 (2009) 734.
[12] (a) H. Tsuji, K. Sato, L. Ilies, Y. Itoh, Y. Sato, E. Nakamura, Org. Lett. 10
(2008) 2263;
(b) H. Tsuji, K. Sato, Y. Sato, E. Nakamura, J. Mater. Chem. 19 (2009)
3364.
[13] T. Sanji, K. Shiraishi, M. Tanaka, Org. Lett. 10 (2008) 2689.
[14] A. Fukazawa, Y. Ichihashi, Y. Kosaka, S. Yamaguchi, Chem. Asian J. 4
(2009) 1729.
Appendix A. Supplementary data
[15] (a) T. Miyajima, Y. Matano, H. Imahori, Eur. J. Org. Chem. (2008) 255;
(b) Y. Matano, T. Miyajima, T. Fukushima, H. Kaji, Y. Kimura, H.
Imahori, Chem. Eur. J. 14 (2008) 8102;
(c) A. Saito, T. Miyajima, T. Nakashima, T. Fukushima, H. Kaji, Y.
Matano, H. Imahori, Chem. Eur. J. 15 (2009) 10000.
[16] A. Fukazawa, M. Hara, T. Okamoto, E.-C. Son, C. Xu, K. Tamao, S.
Yamaguchi, Org. Lett. 10 (2008) 913.
Supplementary data associated with this article can be
References
[17] (a) R.C. Smith, J.D. Protasiewicz, Dalton Trans. (2003) 4738;
(b) S. Yamaguchi, S. Akiyama, K. Tamao, J. Organomet. Chem. 646
(2002) 277;
[1] (a) S. Yamaguchi, K. Tamao, Chem. Lett. 34 (2005) 2;
´
(b) M. Hissler, P. Dyer, R. Reau, Coord. Chem. Rev. 244 (2003) 1;
(c) K. Akasaka, T. Suzuki, H. Ohrui, H. Meguro, Anal. Lett. 20 (1987) 731;
(d) J. Bourson, L. Oliveros, Phosphorus Sulfur 26 (1986) 75;
(e) N.A. Rozenal’skaya, A.I. Bakanov, B.M. Uzhinov, B.I. Stepanov, J. Gen.
Chem. USSR 45 (1975) 263.
(c) A. Fukazawa, S. Yamaguchi, Chem. Asian J. 4 (2009) 1386.
[2] Recent reviews on phosphorus-containing p-conjugated materials:
´
(a) T. Baumgartner, R. Reau, Chem. Rev. 106 (2006) 4681;
(b) F. Mathey, Angew. Chem. Int. Ed. 42 (2003) 1578.
[3] Representative reviews on phospholes:
(a) A.N. Hughes, C. Srivanavit, J. Heterocycl, F. Mathey, Chem. 7 (1970)
1;
[18] M. Pan˜kowski, W. Chodkiewicz, M.-P. Simonnin, Inorg. Chem. 24 (1985)
533.
[19] A. Fukazawa, H. Yamada, S. Yamaguchi, Angew. Chem. Int. Ed. 47 (2008)
5582.
[20] A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualiardi, A. G. G. Moliterni,
M. C. Burla, G. Polidori, M. Camalli, R. Spagna, SIR 97, 1997.
[21] G.M. Sheldrick, SHELX-97, Program for the Refinement of Crystal
Structures, University of Gottingen, Gottingen, Germany, 1997.
[22] Gaussian 03 (Revision C.02), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven,
(b) F. Mathey, Chem. Rev. 88 (1988) 429;
(c) L.D. Quin, A.N. Huges, in: The Chemistry of Organophosphorus
Compounds, ed. F.R. Hartley, Wiley, Chichester, 1990, vol. 1,
pp. 295–384
´
(d) L. Nyulaszi, Chem. Rev. 101 (2001) 1229;
(e) M. Hissler, C. Lescop, R. Re´au, Pure Appl. Chem. 79 (2007) 201;
(f) Y. Matano, H. Imahori, Org. Biomol. Chem. 7 (2009) 1258.