D. Das et al. / Inorganic Chemistry Communications 13 (2010) 1370–1373
1373
tions (Rint.) 5253 (0.0613); data/restraints/parameters 5253/0/315; R indices
[I N2σ(I)] R1 =0.0645 wR2 =0.1904; (all data): R1 =0.0971; wR2 =0.2045;
Largest diff. peak/hole [e.Å−3] 1.478/−0.522. (b) Crystal data: 2: crystal system,
monoclinic; space group, P21/c a=10.1756(17)Å; b=36.935(6)Å; c=10.962(8)Å;
α=90.00°; β=90.190(4)°; γ=90.00; Volume [Å3]=4119.9(12); Z=4; F(000)
ciated with this article can be found, in the online version, at
doi:10.1016/j.inoche.2010.07.039.
2216.0; absorption coeff.[mm−1
] 4.097; Independent reflections (Rint.) 7673
References
(0.0765); data/restraints/parameters 7673/0/496; R indices [ IN2σ(I)] R1=0.0938
wR2=0.1782; (all data): R1 =0.1345; wR2=0.1966; Largest diff. peak/hole [e.Å−3
1.054/−0.893.
]
[1] X.-Y. Lu, H.-J. Xu, X.-T. Chen, Inorg. Chem. Commun. 12 (2009) 887.
[2] J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 127 (2005) 10840.
[3] C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 47 (2008) 8661.
[4] J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 45 (2006)
1113.
[5] J. Zhang, M. Gandelman, L.J.W. Shimon, D. Milstein, Dalton Trans. (2007) 107.
[6] R.C. Cetin, L.A. Watson, C. Guo, B.M. Foxman, O.V. Ozerov, Organometallics 24
(2005) 186.
[7] W. Baratta, G. Chelucci, S. Magnolia, K. Siega, P. Rigo, Chem. Eur. J. 15 (2009) 726.
[8] S. Medici, M. Gagliardo, S.B. Williams, P.A. Chase, S. Gladiali, M. Lutz, A.L. Spek, G.P.
M. van-Klink, G. Van-Koten, Helv. Chim. Acta. 88 (2005) 694.
[9] M. Gagliardo, R.W.A. Havenith, G.P.M. van-Klink, G. Van-Koten, J. Organomet.
Chem. 691 (2006) 4411.
[10] H. Deng, Z. Yu, J. Dong, S. Wu, Organometallics 24 (2005) 4110.
[11] F. Zeng, Z. Yu, Organometallics 27 (2008) 2898.
[12] Z. Yu, F. Zeng, X. Sun, H. Deng, J. Dong, J. Chen, H. Wang, C. Pei, J. Organomet. Chem.
692 (2007) 2306.
[13] C. Gunanathan, Y.B. David, D. Milstein, Science 317 (2007) 790.
[14] D. Das, G.K. Rao, A.K. Singh, Organometallics 28 (2009) 6054.
[15] P.R. Kumar, A.K. Singh, R.J. Butcher, P. Shrma, R.A. Toscano, Eur. J. Inorg. Chem.
(2004) 1107.
[20] (a) Selected bond angles (°) of 1: N(3)–Ru(1)–N(2) 89.1(3), N(3)–Ru(1)–N(1)
93.1(3), N(2)–Ru(1)–N(1) 177.2(3), N(3)–Ru(1)–Cl(1) 177.73(19), N(2)–Ru(1)–
Cl(1) 89.3(2), N(1)–Ru(1)–Cl(1) 88.5(2), N(3)–Ru(1)–Se(1) 94.1(2), N(2)–Ru
(1)–Se(1) 92.8(2), N(1)–Ru(1)–Se(1) 85.4(2), N(3)–Ru(1)–Se(2) 94.8(2), N(2)–
Ru(1)–Se(2) 98.6(2), N(1)–Ru(1)–Se(2) 82.99(1) Se(1)–Ru(1)–Se(2) 165.65(5)
(b) Selected bond angles (°) of 2: N(2)–Ru(1)–Se(2) 96.0(2), N(1)–Ru(1)–Se(2)
84.0(3), N(2)–Ru(1)–Se(4) 84.6(2), N(1)–Ru(1)–Se(4) 95.9(2), Se(2)–Ru(1)–Se
(4) 92.12(5), N(2)–Ru(1)–Se(3) 84.2(2), N(1)–Ru(1)–Se(3) 95.3(2), Se(2)–Ru
(1)–Se(3) 90.26(5), N(2)–Ru(1)–Se(1) 95.7(2), N(1)–Ru(1)–Se(1) 84.3(3), Se
(2)–Ru(1)–Se(1) 168.14(6), Se(4)–Ru(1)–Se(1) 90.97(5), Se(3)–Ru(1)–Se(1)
88.93(5).
[21] S.J. Ahmed, M.I. Hyder, S.E. Kabir, M.A. Miah, A.J. Deeming, E. Nordlander,
J. Organomet. Chem. 691 (2006) 309.
[22] H. Matsuzaka, T. Ogino, M. Nishio, M. Hidai, Y. Nishibayashi, S. Uemura, J. Chem.
Soc. Chem. Commun. (1994) 223.
[23] P. Singh, M. Singh, A.K. Singh, J. Organomet. Chem. 694 (2009) 3872.
[24] P.R. Kumar, S. Upreti, A.K. Singh, Inorg. Chim. Acta 361 (2008) 1426.
[25] D. Das, P. Singh, A.K. Singh, J. Organomet. Chem. 695 (2010) 955.
[26] L. Gonsalvi, I.W.C.E. Arends, P. Moilanen, R.A. Sheldon, Adv. Synth. Catal. 345
(2003) 1321.
[16] R.A. Zelonka, M.C. Baird, Can. J. Chem. 50 (1972) 3063.
[27] L. Gonsalvi, I.W.C.E. Arends, R.A. Sheldon, Org. Lett. 4 (2002) 1659.
[28] R.S. Drago, Coord. Chem. Rev. 117 (1992) 185.
[17] Synthesis of complex [Ru(CH3CN)2Cl(L)][PF6](1).H2O: The [{(η6-C6H6)RuCl(μ-
Cl)}2] (0.025 g, 0.05 mmol) dissolved in 10 cm3 of dry CH3OH was treated with
the solution of L (0.042 g, 0.1 mmol) made in 10 cm3 of dry CH3OH with vigorous
stirring at room temperature. The solution of NH4PF6 (0.0163 g, 0.1 mmol) made
in 10 cm3 of CH3CN was added to the reaction mixture which was further stirred
for 3 h. Its volume was reduced to ~5 cm3 on a rotary evaporator and diethyl-
ether (25 cm3) was added to get an orange precipitate of 1. The precipitate was
filtered, washed with cold methanol and dried. The single crystals of 1 were
[29] T.R. Cundari, R.S. Drago, Inorg. Chem. 29 (1990) 3904.
[30] W.-H. Fung, W.-Y. Yu, C.-M. Che, J. Org. Chem. 63 (1998) 2873.
[31] C.-M. Che, T.-F. Lai, K.-Y. Wong, Inorg. Chem. 26 (1987) 2289.
[32] V.J. Catalano, R.A. Heck, C.E. Immoos, A. Öhman, M.G. Hill, Inorg. Chem. 37 (1998)
2150.
[33] K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Polyhehron 27 (2008) 157.
[34] A.M. EI-Hendawy, A.H. Alkubaisi, A.E. Koarashy, M.M. Shanab, Polyhedron 12
(1993) 2343.
[35] A.S. Goldstein, R.S. Drago, J. Chem. Soc., Chem. Commun. 21 (1991).
[36] M.U. Raja, N. Gowri, R. Ramesh, Polyhedron 29 (2010) 1175.
[37] W.H. Leung, C.M. Chem, Inorg. Chem. 28 (1989) 4619.
[38] M.S. EI-Shahawi, A.F. Shoir, Spectrochim. Acta A 60 (2004) 121.
[39] D. Chatterjeea, A. Mitra, B.C. Roy, J. Mol. Catal A 161 (2000) 17.
[40] M.M.T. Khan, D. Chatterjee, R.R. Merchant, P. Paul, S.H.R. Abdi, D. Srinivas, M.R.H.
Siddiqui, M.A. Moiz, M.M. Bhadbhade, K. Venkatasubramanian, Inorg. Chem. 31
(1992) 2711.
grown from CH3OH–CH3CN mixture (1:1). Yield: (0.046 g, 60%), ΛM
=
127.0 cm2 mol−1 ohm−1
, m.p 195 °C. Analysis: found C, 36.05; H, 2.83; N,
5.05%; calcd. for C23H23ClF6N3PRuSe2 C, 35.39; H, 2.97; N, 5.38%. NMR (1H, CD3CN,
25 °C vs. TMS): (δ, ppm) 5.05 (s, 4H, H5), 7.36–7.55 (m, 10H, H1 +H2 +H3), 7.65
3
(d, JH–H =7.8 Hz, 2H, H7), 7.78 (t, 1H, H8); (13C{1H}, CD3CN, 25 °C vs. TMS): (δ,
ppm) 41.1(C5), 123.4 (C7), 128.0 (C1), 130.1 (C2), 130.7 (C4), 131.2 (C3), 137.0
(C8), 164.1 (C6); (77Se{1H} CD3CN, 25 °C vs. Me2Se): (δ, ppm) 393.0.
[18] Synthesis of [Ru(L)2][ClO4](2): The [{(η6-C6H6)RuCl(μ-Cl)}2] was treated L(molar
ratio 1:4) as described for 1. Using NaClO4 (0.028 g, 0.2 mmol) in place of NH4PF6
orange precipitate of 2 as described above for 1. The precipitate was filtered,
washed with cold methanol and dried. The single crystals of 2 were grown
from CHCl3–CH3CN–CH2Cl2 mixture (1:1:1). Yield: (0.073 g, 65%) ΛM =235.0
[41] Y. Do, S.-B. Ko, I.-C. Hwang, K.-E. Lee, S.W. Lee, J. Park, Organometallics 28 (2009)
4624.
[42] W.M. Cheung, H-Y. Ng, I.D. Williams, W-H. Leung, Inorg. Chem. 47 (20) 4383.
[43] B.J. Hornstein, D.M. Dattelbaum, J.R. Schoonover, T.J. Meyer, Inorg. Chem. 46
(2007) 8139.
cm2mol−1ohm−1
C
.
Analysis: found C, 39.53; H, 2.95; N, 2.61%; calcd. for
38H34Cl2N2O8RuSe4 C, 40.24; H, 3.02; N, 2.47%. m.p 202 °C. NMR (1H, CD3CN,
25 °C vs. TMS): (δ, ppm) 5.25 (s, 8H, H5), 7.30–7.45 (m, 20H, H1 +H2 +H3), 7.68
(d, 3JHH =7.5 Hz, 4H, H7), 7.79 (t,3JHH =7.2 Hz, 2H, H8); (13C{1H}, CD3CN, 25 °C vs.
TMS): (δ, ppm) 40.0 (C5), 122.8 (C7), 127.6.0 (C1), 130.4 (C2), 130.3 (C4), 131.2
(C3), 137.5 (C8), 165.0 (C6); (77Se{1H} CD3CN, 25 °C vs. Me2Se): (δ, ppm) 391.5.
[19] X-ray crystallography; Bruker AXS SMART Apex CCD diffractometer using Mo–Kα
(0.71073 Å) radiations at 298(2) K was used. (a) Crystal data: 1: crystal system,
triclinic; space group, P-1; a=11.073(7)Å; b=12.663(8)Å; c=12.933(8)Å;
α=66.251(10)°; β=76.649.77(10)°; γ=64.369(10); Volume [Å3]=1493.0
(16); Z=1; F(000) 707.0; absorption coeff.[mm−1] 3.117; Independent reflec-
[44] H. Mizoguchi, T. Uchida, K. Ishida, T. Katsuki, Tetrahedron Lett. 50 (2009) 3432.
[45] S. Ganesamoorthy, K. Shanmugasundaram, R. Karvembu, Catal. Comm. 10 (2009)
1835.
[46] P. Singh, D. Das, M. Singh, A.K. Singh, Inorg. Chem. Commun. 13 (2010) 223.
[47] P. Singh, A.K. Singh, Eur. J. Inorg. Chem. 2010 (2010) 4187–4195.
[48] O. Tutusaus, C. Viñas, R. Núñez, F. Teixidor, A. Demonceau, S. Delfosse, A.F. Noels, I.
Mata, E. Molins, J. Am. Chem. Soc. 125 (2003) 11830.
[49] L. Delaude, A. Demonceau, A.F. Noels, Topics Organomet. Chem. 11 (2004) 155.