self-condensation7 and their considered lower acidity com-
pared to 1,3-dicarbonyl compounds,8 significantly limit their
use in intermolecular reactions.
Scheme 1
.
Asymmetric Conjugate Addition of 1,2-Dicarbonyl
Compounds to Nitroalkenes
Despite previous achievements,9,10 asymmetric conjugate
addition with 1,2-dicarbonyl compounds remained unsolved
until very recent examples from the Sodeoka and Shibasaki
groups. In these excellent reports, highly enantioselective 1,4-
addition of R-ketoesters or R-ketoamides to nitroalkenes by
mono- or dinuclear chiral nickel complexes were indepen-
dently developed with complementary diastereoselectivities.11
Our ongoing interest in ketoamide reactivity12 and organo-
catalytic conjugated additions to nitroalkenes13 prompted us
to investigate the unexplored and challenging asymmetric
Michael reaction of R-ketoamides with nitroalkenes (Scheme
1). Herein we present the first example of diastereo- and
enantioselective organocatalytic conjugate addition of 1,2-
dicarbonyl compounds as pronucleophiles.
acceptor, hydrogen bonding promoted by functionalized
thioureas largely leads the way with nitroolefins.15
In the past, success in the development of nucleophilic
addition of carbonyl compounds has been obtained with
chiral organocatalysts through different strategies. Transient
enamine formation from aldehydes or ketones provides a
widespread method for the catalytic generation of enolate
equivalents.3d A basic nitrogen center in the catalyst to aid
in the deprotonation of the carbonyl substrate and bind to
the resulting enolate intermediate represents another impor-
tant strategy.14 Concerning the activation of the Michael
Based on previous achievements in organocatalysis, we began
our investigation by testing the reaction between R-ketoamide
1a and nitrostyrene 2a in the presence of catalytic amounts of
a chiral organocatalyst. It is noteworthy that neither proline nor
proline derivatives showed any significant activity under
standard conditions (see the Supporting Information). Alterna-
tively, bifunctional amine-thiourea 4-7 was found to be more
appropriate for this transformation (Table 1) indicating that a
(5) For a cross-aldol example, see: Torii, H.; Nakadai, M.; Ishihara, K.;
Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983.
(6) For the use of 1,2-ketoesters and 1,2-ketoamides as electrophiles in
organocatalytic transformations, see: (a) Tokuda, O.; Kano, T.; Gao, W.-
G.; Ikemoto, T.; Maruoka, K. Org. Lett. 2005, 7, 5103. (b) Li, H.; Wang,
B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732. (c) Wang, F.; Xiong, Y.;
Liu, X.; Feng, X. AdV. Synth. Catal. 2007, 349, 2665. (d) Takada, K.;
Takemura, N.; Cho, K.; Sohtome, Y.; Nagasawa, K. Tetrahedron Lett. 2008,
49, 1623. (e) Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. AdV. Synth. Catal.
2008, 350, 1885. (f) Yang, J.; Wang, T.; Ding, Z.; Shen, Z.; Zhang, Y.
Org. Biomol. Chem. 2009, 7, 2208. (g) Xiang, J.; Li, B. Chin. J. Chem.
2010, 28, 617.
Table 1. Optimization of the Reaction Conditionsa
(7) Dambruoso, P.; Massi, A.; Dondoni, A. Org. Lett. 2005, 7, 4657.
For an application to Nazarov cyclization, see: Basak, A. K.; Shimada, N.;
Bow, W. F.; Vicic, D. A.; Tius, M. A. J. Am. Chem. Soc. 2010, 132, 8266.
(8) Bonne, D.; Coquerel, Y.; Constantieux, T.; Rodriguez, J. Tetrahe-
dron: Asymmetry 2010, 21, 1085.
(9) Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem. Int. Ed
2001, 40, 2995. See also: Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc.
2002, 124, 2420
.
(10) (a) Lu, G.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2008, 47, 6847. (b) Xu, Y.; Lu, G.; Matsunaga, S.; Shibasaki,
M. Angew. Chem., Int. Ed. 2009, 48, 3353
.
(11) (a) Nakamura, A.; Lectard, S.; Hashizume, D.; Hamashima, Y.;
Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4036. (b) Nakamura, A.; Lectard,
S.; Shimizu, R.; Hamashima, Y.; Sodeoka, M. Tetrahedron: Asymmetry
2010, 21, 1682. (c) Xu, Y.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2010,
12, 3246. For a non-enantioselective conjugated addition of R-ketoesters
to nitroalkenes, see: Maeda, H.; Kraus, G. A. J. Org. Chem. 1997, 62, 2314.
(12) (a) Allais, C.; Constantieux, T.; Rodriguez, J. Synthesis 2009, 2523.
(b) Allais, C.; Constantieux, T.; Rodriguez, J. Chem.sEur. J. 2009, 15,
12945. (c) Sotoca, E.; Allais, C.; Constantieux, T.; Rodriguez, J. Org. Biomol.
Chem. 2009, 7, 1911. (d) Sotoca, E.; Constantieux, T.; Rodriguez, J. Synlett
2008, 1313. (e) Lie´by-Muller, F.; Allais, C.; Constantieux, T.; Rodriguez, J.
Chem. Commun. 2008, 4207. (f) Lie´by Muller, F.; Constantieux, T.;
Rodriguez, J. J. Am. Chem. Soc. 2005, 127, 17176.
entry
catalyst
solvent
yieldb (%)
drc
5:1
>20:1
>20:1
15:1
>20:1
>20:1
>20:1
>20:1
>20:1
eed (%)
1
2
3
4
5
6
7
8
9
4
5
5
5
5
5
5
6
7
toluene
toluene
THF
DCM
DCE
EtOAc
2-propanol
EtOAc
EtOAc
<10
89
85
85
80
83
82
40
44
nd
96
98
98
99
>99
90
60
(13) (a) Raimondi, W.; Lettieri, G.; Dulce`re, J.-P.; Bonne, D.; Rodriguez,
J. Chem. Commun 2010, 46, 7247. (b) Dumez, E.; Durand, A.-C.; Guillaume,
M.; Roger, P.-Y.; Faure, R.; Pons, J.-M.; Herbette, G.; Dulce`re, J.-P.; Bonne,
D.; Rodriguez, J. Chem.sEur. J. 2009, 15, 12470. (c) Bonne, D.; Salat, L.;
Dulce`re, J.-P.; Rodriguez, J. Org. Lett. 2008, 10, 5409.
41
a Ketoamide 1a (0.1 mmol), nitrostyrene 2a (0.11 mmol), solvent (0.2
mL). b Isolated yield after column chromatography. c Determined by 1H
NMR of the crude reaction product. d Determined by chiral HPLC analysis.
(14) For recent examples of soft enolization with organocatalyst, see:
(a) Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett.
2010, 12, 3376.
Org. Lett., Vol. 12, No. 22, 2010
5247