pubs.acs.org/joc
of them show remarkable activity as anticancer,4 antiviral,5
Copper-Catalyzed Synthesis of Quinazoline
Derivatives via Ullmann-Type Coupling and Aerobic
Oxidation
and antitubercular agents.6 Molecules containing the quina-
zoline unit have been popular drugs. For example, Erlotinib
is used in the treatment of several types of tumors,7 Prazosin
acts as an R-adrenergic blocker,8 and Iressa as an epidermal
growth factor receptor inhibitor was approved by the Food
and Drug Administration in USA for the treatment of lung
cancer9 (Figure 1). Wide demands of diverse quinazoline
derivatives in various fields promote people to develop
different synthetic methods. Many methods for syntheses
of quinazoline derivatives have been developed thus far.10
For example, reactions of 2-amino-N-arylbenzamidines and
formic acid provided 4-arylaminoquinazolines.11 Reactions
of 2-amino-N0-phenylbenzimidamides with aromatic alde-
hydes yielded 2-aryl-4-arylimino-2,3-dihydroquinazolines,
followed by oxidation with potassium permanganate to give
the corresponding quinazolines.12 Couplings of 2-aminoben-
zonitriles with carbon dioxide (1 atm) at 20 °C, assisted by
DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), gave 2,4-dihy-
droxyquinazolines.13 6-Substituted quinazoline-2,4-diones
were converted to 2,4-dichloroquinazolines in excellent
yields by refluxing in phosphorus oxychloride.14 Although
the previous methods for synthesis of quinazoline derivatives
are efficient, the used starting materials often are not readily
available and difficult to prepare. It is highly desirable to
search for a more convenient and efficient approach. Re-
cently, there has been great progress in copper-catalyzed
N-arylations,15 and the N-arylation strategy has been used to
make N-heterocycles.16 We have also developed some effi-
cient methods for copper-catalyzed cross couplings17 and
synthesis of N-heterocycles.18 Copper-catalyzed synthesis of
quinazoline derivatives has also been developed by Truong’s
Chen Wang,† Shangfu Li,‡ Hongxia Liu,‡ Yuyang Jiang,‡
and Hua Fu*,†
†Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology (Ministry of Education), Department of
Chemistry, Tsinghua University, Beijing 100084,
People’s Republic of China, and ‡Key Laboratory of Chemical
Biology (Guangdong Province), Graduate School of Shenzhen,
Tsinghua University, Shenzhen 518057,
People’s Republic of China
Received August 26, 2010
A simple and efficient copper-catalyzed approach to
quinazoline derivatives has been developed, and the pro-
tocol uses readily available substituted (2-bromophenyl)-
methylamines and amides as the starting materials, and
the cascade reactions were performed under air via se-
quential Ullmann-type coupling and aerobic oxidation
without addition of any ligand or additive. The present
method provides a convenient and practical strategy for
synthesis of quinazoline derivatives.
(6) (a) Waisser, K.; Gregor, J.; Dostal, H.; Kunes, J.; Kubicova, L.;
Klimesova, V.; Kaustova, J. Farmaco 2001, 56, 803. (b) Kunes, J.; Bazant, J.;
Pour, M.; Waisser, K.; Slosarek, M.; Janota, J. Farmaco 2000, 55, 725.
(7) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.;
Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367.
(8) Mendes da Silva, J. F.; Walters, M.; Al-Damluji, S.; Ganellin, C. R.
Bioorg. Med. Chem. 2008, 16, 7254.
(9) (a) Rewcastle, G. W.; Palmer, B. D.; Bridges, A. J.; Hollis Showalter,
H. D.; Sun, L.; Nelson, J.; McMichael, A.; Kraker, A. J.; Fry, D. W.; Denny,
W. A. J. Med. Chem. 1996, 39, 918. (b) Luth, A.; Lowe, W. Eur. J. Med.
Chem. 2008, 43, 1478.
Quinazoline derivatives have attracted much attention
for their various biological and medicinal properties. For
example, they act as the potent tyrosine kinase and cellular
phosphorylation inhibitors,1 and they are also used as
ligands for benzodiazepine and GABA receptors in the
central nervous system (CNS)2 or as DNA binders.3 Some
(10) For reviews, see: (a) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.;
Guiry, P. J. Tetrahedron 2005, 61, 10153. (b) Besson, T.; Chosson, E. Comb.
Chem. High Throughput Screening 2007, 10, 903. (c) Michael, J. P. Nat. Prod.
Rep. 2003, 20, 476. (d) Undheim, K.; Benneche, T. In Comprehensive
Heterocyclic Chemistry; Pergamon: Oxford, UK, 1998; Vol. 6. Selected
examples: (e) Shreder, K. R.; Wong, M. S.; Nomanbhoy, T.; Leventhal,
P. S.; Fuller, S. R. Org. Lett. 2004, 6, 3715. (f) Costa, M.; Ca, N. D.; Gabriele,
B.; Massera, C.; Salerno, G.; Soliani, M. J. Org. Chem. 2004, 69, 2469. (g)
Yoon, D. S.; Han, Y.; Stark, T. M.; Haber, J. C.; Gregg, B. T.; Stankovich,
S. B. Org. Lett. 2004, 6, 4775. (h) Wiedemann, S. H.; Ellman, J. A.; Bergman,
R. G. J. Org. Chem. 2006, 71, 1969. (i) Fekner, T.; Muller-Bunz, H.; Guiry,
P. J. Org. Lett. 2006, 8, 5109. (j) Kappe, C. O. Angew. Chem., Int. Ed. 2004,
43, 6250. (k) Bianchi, I.; Forlani, R.; Minetto, G.; Peretto, I.; Regalia, N.;
Taddei, M.; Raveglia, L. F. J. Comb. Chem. 2006, 8, 491. (l) Ferrini, S.;
Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69.
*To whom correspondence should be addressed. Fax: 86-10-62781695.
(1) Fry, D. W.; Kraker, A. J.; McMichael, A.; Ambroso, L. A.; Nelson,
J. M.; Leopold, W. R.; Connors, R. W.; Bridges, A. J. Science 1994, 265,
1093.
(2) (a) Colotta, V.; Catarzi, D.; Varano, F.; Lenzi, O.; Filacchioni, G.;
Costagli, C.; Galli, A.; Ghelardini, C.; Galeotti, N.; Gratteri, P.; Sgrignani,
J.; Deflorian, F.; Moro, S. J. Med. Chem. 2006, 49, 6015. (b) Lewerenz, A.;
Hentschel, S.; Vissiennon, Z.; Michael, S.; Nieber, K. Drug Dev. Res. 2003,
58, 420.
(3) Malecki, N.; Carato, P.; Rigo, G.; Goossens, J. F.; Houssin, R.; Bailly,
C.; Henichart, J. P. Bioorg. Med. Chem. 2004, 12, 641.
ꢀ
(11) Szczepankiewicz, W.; Suwinski, J. Tetrahedron Lett. 1998, 39, 1785.
ꢀ
(12) Szczepankiewicz, W.; Suwinski, J. J.; Bujok, R. Tetrahedron 2000,
(4) (a) Doyle, L. A.; Ross, D. D. Oncogene 2003, 22, 7340. (b) Henderson,
E. A.; Bavetsias, V.; Theti, D. S.; Wilson, S. C.; Clauss, R.; Jackman, A. L.
Bioorg. Med. Chem. 2006, 14, 5020. (c) Foster, A.; Coffrey, H. A.; Morin,
M. J.; Rastinejad, F. Science 1999, 286, 2507.
(5) (a) Chien, T.-C.; Chen, C.-S.; Yu, F.-H.; Chern, J.-W. Chem. Pharm.
Bull. 2004, 52, 1422. (b) Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.;
Stamminger, T.; Marschall, M. Antimicrob. Agents Chemother. 2004, 48,
4154.
56, 9343.
(13) Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, Y. Tetrahedron Lett.
2000, 41, 1051.
(14) Lee, S. J.; Konoshi, Y.; Yu, D. T.; Miskowski, T. A.; Riviello, C. M.;
Macina, O. T.; Frierson, M. R.; Kondo, K.; Sugitani, M.; Sircar, J. C.;
Blazejewski, K. M. J. Med. Chem. 1995, 38, 3547.
7936 J. Org. Chem. 2010, 75, 7936–7938
Published on Web 10/22/2010
DOI: 10.1021/jo101685d
r
2010 American Chemical Society