J. Ko et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6017–6019
6019
O
O
O
Benzyl bromide
OH
OH
OH
O
N
H
Ph
N
Ph
N
CH2Cl2, TEA
2h. rt
DMF, 80 ºC
2 days
95 %
Ph
Ph
Ph
O
O
84 %
3
O
O
O
Boc2O
Boc
OH
Boc
H2N
H2N
N
N
H
CH2Cl2, TEA
2h. rt
CH2Cl2, TEA
3h. rt
H
Ph
Ph
Ph
Ph
O
O
99 %
88 %
O
O
4
O
Boc2O
OH
Boc
OH
Boc
O
N
H
N
H
CH2Cl2, TEA
2h. rt
CH2Cl2, TEA
3h. rt
Ph
Ph
5
95 %
81 %
Scheme 2. Synthesis of chiral auxiliary-methacrylates.
Table 3
Synthesis of 1 using various chiral auxiliaries
References and notes
Entry Methacrylates
Diastereoselectivitya Enantioselectivityb Yieldc
(%)
1. Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53, 409.
2. Rosenson, S. R. Expert Rev. Cardiovasc. Ther. 2008, 6, 1319.
3. Picard, F.; Auwerx, J. Annu. Rev. Nutr. 2002, 22, 167.
cis-1/trans-1
1a/1b (À)/(+)-1c
4. Wang, Y.; Zhang, C.; Yu, R. T.; Cho, H. K.; Nelson, M. C.; Bayuga-Ocampo, C. R.;
Ham, J.; Kang, H.; Evans, R. M. PLoS Biol. 2004, 2, e294.
5. Narkar, V. A.; Downes, M.; Yu, R. T.; Embler, E.; Wang, Y.; Banayo, E.;
Mihaylova, M. M.; Nelson, M. C.; Zou, Y.; Juguilon, H.; Kang, H.; Shaw, R. J.;
Evans, R. M. Cell 2008, 134, 405.
6. CV-1 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM). Cells
were transfected with plasmid mixture containing b-galactosidase expression
vector and TK-PPRE-luc vector by Superfect reagent (QIAGEN). Transfected
cells were incubated with compounds (marine natural products). Luciferase
activity was analyzed after incubation for 24 h at 37 °C.
1
Methyl
55/45
51/49 49/51
56
methacrylate
(1R,2S)-3
(1R)-4
2
3
4
50/50
50/50
49/51
45/55 26/74
70/30 27/73
28/72 81/19
45
60
54
(1S,2R)-5
trans and cis configurations were confirmed by 1H–1H NOESY, and the ratio of
trans/cis was determined by HPLC.
Enantioselectivity was determined by HPLC analysis on
column.
a
b
a Chiralcel (OJ-H)
7. Sandler, J. S.; Colin, P. L.; Hooper, J. N. A.; Faulkner, D. J. J. Nat. Prod. 2002, 65,
1258.
c
Total isolated yields of trans and cis products.
8. (a) Manchand, P. S.; Yiannikouros, G. P.; Belica, P. S.; Madan, P. J. Org. Chem.
1995, 60, 6574; (b) Garraffo, H. M.; Jain, P.; Spande, T. F.; Daly, J. W.; Jones, T. H.;
Smith, L. J.; Zottig, V. E. J. Nat. Prod. 2001, 64, 421; (c) Sustmann, R.; Hopp, P.;
Holl, P. Tetrahedron Lett. 1989, 30, 689.
In all cases, diastereoselectivity was not observed (Table 3). In
terms of enantioselectivity, methyl methacrylate showed no effect,
as demonstrated by the resulting racemic mixture (entry 1). On the
other hand, when methacrylate (1R,2S)-3 was used as a chiral aux-
iliary, (+)-1c predominated, while no enantioselectivity between
1a and 1b was achieved (entry 2). However, both 1a and (+)-1c
were the major products when using methacrylate (1R)-4, thus
affecting the enantioselectivity of the cis product (1a and 1b) de-
spite the absence of substituents on its 2-position (entry 3). Based
on these results, we expected that the S-configuration of the 1-po-
sition of the ephedrinyl auxiliary would produce the most active
stereoisomer (entry 4) and concluded that the stereochemistry of
each diastereomer was influenced by the configuration of the chi-
ral auxiliary.
In summary, we found that the four diastereomers of compound
1 comprise a novel class of natural PPAR agonists. Their PPAR activ-
ities suggested that compound 1 could form a new class of PPARa/d
dual agonists. We also achieved the stereo-controlled synthesis of
1 starting from vinylmethyl ketone with enantioenrichment using
chiral auxiliaries in a ketyl radical anion reaction.
9. (a) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307; (b) Otsubo, K.;
Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5763; (c) Kawatsura, M.;
Matsuda, F.; Shirahama, H. J. Org. Chem. 1994, 59, 6900.
10. Data for cis (2R ,4S )-1: 1H NMR (500 MHz, CDCl3) d 7.15–7.29 (m, 5H), 2.80 (m,
1H), 2.59 (t, 2H, J = 7.7 Hz), 2.19 (dd, 1H, J = 9.1, 12.5 Hz), 1.68 (m, 1H), 1.64 (m,
4H), 1.35 (s, 3H), 1.26 (d, 3H, J = 7.6 Hz), 1.25–1.40 (m, 18H); 13C NMR
(125 MHz, CDCl3) d 179.5, 143.2, 128.6, 128.4, 125.7, 84.4, 42.0, 41.9, 36.2, 35.2,
31.7, 30.0, 29.8, 29.7, 29.6, 29.5, 24.9, 23.9, 15.7; HRMS calcd for C24H38O2 (M+)
*
*
358.29; found 358.2870; 1a [a]D = À4.1 (c 0.003, CHCl3), 1b [a]D = +3.6 (c 0.003,
CHCl3).
Data for trans (2S*,4S*)-1: 1H NMR (500 MHz, CDCl3) d 7.15–7.29 (m, 5H), 2.80
(m, 1H), 2.59 (t, 2H, J = 7.7 Hz), 2.35 (dd, 1H, J = 9.3, 12.8 Hz), 1.62 (m, 1H), 1.59
(m, 4H), 1.40 (s, 3H), 1.27 (d, 3H, J = 7.2 Hz), 1.25–1.40 (m, 18H); 13C NMR
(125 MHz, CDCl3) d 179.7, 143.2, 128.6, 128.4, 125.7, 84.6, 42.0, 40.5, 36.2, 35.7,
31.7, 30.1, 29.8, 29.7, 29.6, 29.5, 27.2, 24.3, 16.3; HRMS calcd for C24H38O2 (M+)
358.29; found 358.2869; (À)-1c [
a]D = À6.3 (c 0.005, CHCl3); (+)-1c [a]D = +7.4
(c 0.004, CHCl3).
11. HPLC conditions: Chiralpak OJ-H (10 Â 250 mm) eluent, hexane/isopropyl
alcohol = 97/3; detection, UV at 209 nm. Retention time; 1a (7.2 min), 1b
(11.1 min), (À)-1c (8.7 min) and (+)-1c (12.5 min).
12. Garnier, J.-M.; Robin, S.; Guillot, R.; Rousseau, G. Tetrahedron: Asymmetry 2007,
18, 1434.
13. (a) Markt, P.; Petersen, R. K.; Flindt, E. N.; Kristiansen, K.; Kirchmair, J.; Spitzer,
G.; Distinto, S.; Schuster, D.; Wolber, G.; Laggner, C.; Langer, T. J. Med. Chem.
2008, 51, 6303; (b) Wei, Z.; Petukhov, P. A.; Bizik, F.; Teixeira, J. C.; Mercola, M.;
Volpe, E. A.; Glazer, R. I.; Wilson, T. M.; Kozikowski, A. P. J. Am. Chem. Soc. 2004,
126, 16714.
Acknowledgements
14. Fukuszwa, S.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem. Soc. 1997, 119,
1482.
15. (a) Wang, W.; Zhong, Y.; Lin, G. Tetrahedron Lett. 2003, 44, 4613; (b) Huang, L.;
Xu, M.; Lin, G. J. Org. Chem. 2005, 70, 529.
16. Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter, D. Org. Biomol. Chem.
2004, 2, 2476.
H.H., J.H., D.H., and I.Y. were in part supported by the BK21 pro-
gram, Ministry of Education, Science and Technology, Korea. This
work was supported by the Marine Biotechnology Program, Minis-
try of Land, Transport and Maritime Affairs, Korea.