6016
K. Yamada et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6013–6016
2. Shimada, N.; Hasegawa, S.; Harada, T.; Tomisawa, T.; Fujii, A.; Takita, T. J.
Antibiot. (Tokyo) 1986, 39, 1623.
shown in Scheme 4. Thymine derivative 6a was obtained in 70%
yield by debenzoylation and subsequent desilylation.13 Uracil
derivative 15b was aminated at the 4-position by treatment with
2,4,6-triisopropylbenzenesulfonyl chloride (TPSCl) in acetonitrile
in the presence of triethylamine and 4-(dimethylamino)pyridine
(DMAP), followed by aqueous ammonia, to give cytosine derivative
22. As with the thymine derivative, 22 was deprotected to give
apio-d4C derivative 6b in 72% yield from 15b.14 Next, we tried to
prepare a purine derivative using the above-mentioned reaction.
Treatment of diacetate 10 with N6-benzoyladenine and tin(IV)
chloride at 0 °C gave 23, which was subsequently deacetylated to
afford 24 in 63% yield from 10. Moreover, 24 was converted into
20-mesylate 25 in 78% yield. As we expected, the substitution reac-
tion of 20-mesylate 25 proceeded selectively to give only the de-
sired 26 in 80% yield. Attempted desilylation of 26 with
ammonium hydrogen fluoride in DMF was unsuccessful because
a deglycosylation reaction occurred even under the weakly acidic
conditions. Instead of using ammonium hydrogen fluoride, the
desilylation was successfully accomplished with TBAF, and subse-
quent debenzoylation gave the adenine derivative 6c in 64%
yield.15
3. (a) Svansson, L.; Kvarnstroem, I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1991,
56, 2993; (b) Tseng, C. K. H.; Marquez, V. E.; Milne, G. W. A.; Wysocki, R. J., Jr.;
Mitsuya, H.; Shirasaki, T.; Driscoll, J. S. J. Med. Chem. 1991, 34, 343; (c)
Vanheusden, V.; Munier-Lehmann, H.; Froeyen, M.; Dugue, L.; Heyerick, A.; De
Keukeleire, D.; Pochet, S.; Busson, R.; Herdewijn, P.; Van Calenbergh, S. J. Med.
Chem. 2003, 46, 3811.
4. (a) Jung, M. E.; Nichols, C. J. J. Org. Chem. 1998, 63, 347; (b) Kakefuda, A.; Shuto,
S.; Nagahata, T.; Seki, J.; Sasaki, T.; Matsuda, A. Tetrahedron 1994, 50, 10167; (c)
Tino, J. A.; Clark, J. M.; Field, A. K.; Jacobs, G. A.; Lis, K. A.; Michalik, T. L.;
McGeever-Rubin, B.; Slusarchyk, W. A.; Spergel, S. H. J. Med. Chem. 1993, 36,
1221.
5. (a) Jeong, L. S.; Lee, Y. A.; Moon, H. R.; Yoo, S. J.; Kim, S. Y. Tetrahedron Lett. 1998,
39, 7517; (b) Jeong, L. S.; Kim, H. O.; Moon, H. R.; Hong, J. H.; Yoo, S. J.; Choi, W.
J.; Chun, M. W.; Lee, C.-K. J. Med. Chem. 2001, 44, 806.
6. Yaginuma, S.; Muto, N.; Tsujino, M.; Sudate, Y.; Hayashi, M.; Otani, M. J.
Antibiot. (Tokyo) 1981, 34, 359.
7. Song, G. Y.; Paul, V.; Choo, H.; Morrey, J.; Sidwell, R. W.; Schinazi, R. F.; Chu, C. K.
J. Med. Chem. 2001, 44, 3985.
8. Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579.
9. Doboszewski, B.; Herdewijn, P. Tetrahedron 2008, 64, 5551.
10. Similar allylic substitution has been reported: (a) Czernecki, S.; Ezzitouni, A. J.
Org. Chem. 1992, 57, 7325; (b) Czernecki, S.; Ezzitouni, A. Tetrahedron Lett.
1993, 34, 315.
11. (a) Hassan, A. A. A.; Matsuda, A. Heterocycles 1992, 34, 657; (b) Hassan, A. A. A.;
Shuto, S.; Matsuda, A. Tetrahedron 1994, 50, 689.
12. Procedure of the preparation of 15a: To a solution of 14a (200 mg, 0.42 mmol) in
DMF (12 ml), sodium iodide (189 mg, 1.26 mmol), benzoic anhydride (285 mg,
3.75 mmol) and benzoic acid (15 mg, 0.04 mmol) were added, and the mixture
was stirred at 130 °C for 4 h. Solvent was removed under reduced pressure, and
the residue was extracted with AcOEt, and the organic phase was washed with
saturated NaHCO3, water and brine, and then dried (Na2SO4). The solvent was
removed under reduced pressure, and the residue was purified by column
chromatography over silica gel (2.2 ꢃ 13 cm, 30–50% AcOEt in n-hexane) to
give 15a (174 mg, 69%) and 16a (9 mg, 3%) as an amorphous foam, respectively.
13. Data for 6a: white solid. Mp 160 °C; UV (MeOH): kmax 265 nm; 1H NMR
(400 MHz, DMSO-d6): d 11.27 (1H, s, NH), 7.16 (1H, d, H-6, J = 1.5 Hz), 6.82–
6.81 (1H, m, H-10), 5.63 (1H, t, H-20, J = 1.5 Hz), 5.09 (1H, t, OH, J = 5.4 Hz), 4.94
(1H, br s, H-40), 4.77 (1H, dd, OH, J = 5.4, 6.4 Hz), 4.17–4.13 (2H, m, H-allyl),
3.56 (1H, ddd, H-50a, J = 3.9, 5.4, 12.2 Hz), 3.44 (1H, ddd, H-50b, J = 3.9, 6.4,
12.2 Hz), 1.77 (1H, d, Me, J = 1.5 Hz); 13C NMR (125 MHz, DMSO-d6): 163.8,
150.6, 149.7, 135.8, 118.7, 109.6, 88.8, 86.6, 62.0, 56.7, 12.0; FAB-MS (m/z) 255
(M++H); HR-ESIMS (m/z). Calcd for [C11H14N2O5Na]+: 277.0800; found:
277.0820. Anal. Calcd for C11H14N2O5: C, 51.97; H, 5.55; N, 11.02. Found: C,
51.80; H, 5.61; N, 10.94.
In conclusion, we describe a selective SN20 reaction triggered by
iodide ion that leads to the ring-opening of 2,20-anhydro-
a
-nucleo-
sides (14). By applying the method, we have synthesized a-D
-20,30-
didehydro-20,30-dideoxy-30-C-hydroxymethyl nucleosides (6).
These nucleosides were assayed for antiviral activities against sev-
eral viruses, such as HIV-1, herpes simplex virus (HSV) types-1,2,
and HCMV.16 Although the thymine derivative 6a was found to ex-
hibit very weak anti-HSV type-1 activity (EC50 = 33
lg/mL, CC50
>100 g/mL), none of the other compounds that we tested showed
l
any antiviral activity or cytotoxicity. To clarify the reason why
these nucleosides except 6a were inactive, the further study on
their structure–activity relationships should be needed.
Acknowledgment
14. Data for 6b: amorphous foam. UV (MeOH): kmax 238, 272 nm; 1H NMR
(400 MHz, DMSO-d6): d 7.34 (1H, d, H-6, J = 7.3 Hz), 7.16 (1H, br s, NH), 7.11
(1H, br s, NH), 6.88–6.86 (1H, m, H-10), 5.72 (1H, d, H-5, J = 7.3 Hz), 5.64 (1H, t,
H-20, J = 1.5 Hz), 5.06 (1H, t, OH, J = 5.4 Hz), 4.91–4.90 (1H, m, H-40), 4.78 (1H, t,
OH, J = 5.9 Hz), 4.18–4.08 (2H, m, H-allyl), 3.56 (1H, ddd, H-50a, J = 3.9, 5.9,
11.7 Hz), 3.46 (1H, ddd, H-50b, J = 4.4, 5.9, 11.7 Hz); 13C NMR (125 MHz, DMSO-
d6): 165.6, 155.3, 148.7, 141.0, 119.9, 94.3, 89.5, 86.4, 62.2, 56.7; FAB-MS (m/z)
240 (M++H); HR-ESIMS (m/z). Calcd for [C10H13N3O4Na]+: 262.0804; found:
262.0847. Anal. Calcd for C10H13N3O4ꢁ0.6H2O: C, 48.04; H, 5.72; N, 16.81.
Found: C, 48.03; H, 5.86; N, 17.02.
We are grateful to Dr. K. Kodama of Yamasa Corporation for his
encouragement throughout this work.
References and notes
1. See, for example: (a) Yoshimura, Y.; Asami, K.; Imamichi, T.; Kuroda, T.; Shiraki,
K.; Tanaka, H.; Takahata, H. J. Org. Chem. 2010, 75, 4161; (b) Yoshimura, Y.;
Yamazaki, Y.; Saito, Y.; Takahata, H. Tetrahedron 2009, 65, 9091; (c) Yoshimura,
Y.; Ohta, M.; Imahori, T.; Imamichi, T.; Takahata, H. Org. Lett. 2008, 10, 3449; (d)
Yoshimura, Y.; Asami, K.; Matsui, H.; Tanaka, H.; Takahata, H. Org. Lett. 2006, 8,
6015; (e) Yoshimura, Y.; Kitano, K.; Yamada, K.; Sakata, S.; Miura, S.; Ashida, N.;
Machida, H. Bioorg. Med. Chem. 2000, 8, 1545; (f) Yoshimura, Y.; Endo, M.;
Miura, S.; Sakata, S. J. Org. Chem. 1999, 64, 7912; (g) Yamada, K.; Sakata, S.;
Yoshimura, Y. J. Org. Chem. 1998, 63, 6891; (h) Satoh, H.; Yoshimura, Y.; Sakata,
S.; Miura, S.; Machida, H.; Matsuda, A. Bioorg. Med. Chem. Lett. 1998, 8, 989; (i)
Yoshimura, Y.; Watanabe, M.; Satoh, H.; Ashida, N.; Ijichi, K.; Sakata, S.;
Machida, H.; Matsuda, A. J. Med. Chem. 1997, 40, 2177; (j) Yoshimura, Y.; Kitano,
K.; Yamada, K.; Satoh, H.; Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.;
Matsuda, A. J. Org. Chem. 1997, 62, 3140; (k) Yoshimura, Y.; Kitano, K.; Satoh, H.;
Watanabe, M.; Miura, S.; Sakata, S.; Sasaki, T.; Matsuda, A. J. Org. Chem. 1996,
61, 822; (l) Yoshimura, Y.; Saitoh, K.; Ashida, N.; Sakata, S. Bioorg. Med. Chem.
Lett. 1994, 4, 721.
15. Data for 6c: amorphous foam. UV (MeOH): kmax 261 nm; 1H NMR (400 MHz,
DMSO-d6): d 8.16 (1H, s, H-2 or H-8), 8.08 (1H, s, H-8 or H-2), 7.24 (2H, br s,
NH2), 6.94–6.93 (1H, m, H-10), 5.90 (1H, t, H-20, J = 1.5 Hz), 5.11 (1H, br s, OH),
5.00 (1H, br s, H-40), 4.81 (1H, br s, OH), 4.25–4.15 (2H, m, H-allyl), 3.63–3.51
(2H, m, H-50); 13C NMR (125 MHz, DMSO-d6): 155.9, 152.6, 149.4, 149.0, 138.4,
118.9, 118.6, 87.2, 86.5, 62.0, 56.8; FAB-MS (m/z) 264 (M++H); HR-ESIMS (m/z).
Calcd for [C11H13N5O3Na]+: 286.0916; found: 286.0939. Anal. Calcd for
C
11H13N5O3ꢁ0.1H2O: C, 49.85; H, 5.02; N, 26.42. Found: C, 49.87; H, 4.93; N,
26.54.
16. Antiviral activities, except against HIV, and cytotoxicities were assayed at the
Biological Laboratory of Yamasa Corp. Anti-HIV activity was tested at the
Rational Drug Design Laboratories, Fukushima, Japan. We greatly appreciate
the assistance of the staff there.