C O M M U N I C A T I O N S
Figure 3. X-ray crystal structure of C60@1. For clarity, only one isomer
of encapsulated C60 molecules is shown. Thermal ellipsoids represent 50%
probability. The C60 molecule is depicted as a sphere model. Solvent
molecules, two extracapsular C60 molecules, and hydrogen atoms have been
omitted for clarity.
Figure 2. UV-vis absorption spectra of 1 (2.0 µM) in toluene in the
presence of various amounts of C60 (0 < [C60] < 36 µM) at 25 °C. Arrows
indicate the changes in absorption with increasing [C60]. Inset: plot of
∆A431nm vs [C60].
C60. We are currently exploring the synthesis of free-base and Zn(II)
counterparts of C60@1 and their electron-transfer chemistry.
The UV-vis absorption spectrum of 1 is spread over a wide range
of the visible region relative to that of the monomer, indicating the
effective electronic interaction between the porphyrin units though
the pyridyl bridges (Figure 2).
Supporting Information Available: Preparation and analytical data
for samples and crystallographic data (CIF) for 1 and C60@1. This
In the next step, the encapsulation of C60 into 1 was examined,
as the diameter of the interior cavity of 1 is ∼14 Å, which is nicely
fit to the diameter of C60.10 Actually, the addition of C60 into a
toluene solution of 1 changed the absorption spectrum as a result
of electronic interactions between the two components (Figure 2).
The encapsulation was also confirmed by 13C NMR spectroscopy:
a 1:1 mixture solution of 1 and C60 in CDCl3 showed a signal at
139.6 ppm that was distinctly different from the signal of free C60
observed at 143.1 ppm and hence assignable to C60@1. The
complexation stoichiometry was determined to be 1:1 on the basis
of the Job’s plot, and the association constant of C60@1 was
estimated from the UV-vis absorption changes to be (5.3 ( 0.1)
× 105 M-1, which is certainly large but comparable to or slightly
smaller than those reported for cyclic porphyrin dimers11a,b and a
cyclic porphyrin timer.11c
Fortunately, the complex structure was unambiguously confirmed
by single-crystal X-ray diffraction analysis (Figure 3). In the solid
state, the porphyrin units of C60@1 have a structure similar to that
of 1 with respect to the pyridine-pyrrole distance (1.45-1.50 Å),
the dihedral angles of the pyridines with respect to the porphyrins
(50-53°), and the void space (14 Å diameter). As shown in Figure
3, a C60 molecule is nicely captured within the void space with an
average distance of ∼3.6 Å. Closer inspection of the crystal structure
revealed that the constitutional ruffled porphyrins protrude their
convex faces toward the interior void space, which interacts with
References
(1) Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank,
J.; Wegner, H.; de Meijere, A. Science 2001, 295, 1500.
(2) (a) Kammermeier, S.; Jones, P. G.; Herges, R. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2669. (b) Gleiter, R.; Esser, B.; Kornmayer, S. C. Acc.
Chem. Res. 2009, 42, 1108. (c) Steinberg, B. D.; Scott, L. T. Angew. Chem.,
Int. Ed. 2009, 48, 5400. (d) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.;
Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 17646. (e) Takaba, H.;
Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Angew. Chem., Int.
Ed. 2009, 48, 6112. (f) Yamago, S.; Watanabe, Y.; Iwamoto, T. Angew.
Chem., Int. Ed. 2010, 49, 757.
(3) (a) Yao, T.; Yu, H.; Vermeij, R. J.; Bodwell, G. J. Pure Appl. Chem. 2008,
80, 533. (b) Kawase, T.; Kurata, H. Chem. ReV. 2006, 106, 5250. (c) Tahara,
K.; Tobe, Y. Chem. ReV. 2006, 106, 5274. (d) Pascal, R. A., Jr. Chem.
ReV 2006, 106, 4809.
(4) Senge, M. O. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M.,
Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1, pp 239.
(5) (a) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Acc. Chem. Res. 1993,
26, 469. (b) Nakamura, Y.; Aratani, N.; Osuka, A. Chem. Soc. ReV. 2007,
36, 831.
(6) (a) Hoffmann, M.; Wilson, C. J.; Odell, B.; Anderson, H. L. Angew. Chem.,
Int. Ed. 2007, 46, 3122. (b) Sugiura, K.-i.; Fujimoto, Y.; Sakata, Y. Chem.
Commun. 2000, 1105. (c) Nakamura, Y.; Aratani, N.; Shinokubo, H.;
Takagi, A.; Kawai, T.; Matsumoto, T.; Yoon, Z. S.; Kim, D. Y.; Ahn,
T. K.; Kim, D.; Muranaka, A.; Kobayashi, N.; Osuka, A. J. Am. Chem.
Soc. 2006, 128, 4119.
(7) Song, J.; Aratani, N.; Heo, J. H.; Kim, D.; Shinokubo, H.; Osuka, A. J. Am.
Chem. Soc. 2010, 132, 11868.
(8) (a) Yamaguchi, T.; Ishii, N.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2003,
125, 13934. (b) Nobukuni, H.; Shimazaki, Y.; Tani, F.; Naruta, Y. Angew.
Chem., Int. Ed. 2007, 46, 8975.
(9) Shinokubo, H.; Osuka, A. Chem. Commun. 2009, 1011.
(10) (a) Smith, B. W.; Monthioux, M.; Luzzi, D. E. Nature 1998, 396, 323. (b)
Bandow, S.; Takizawa, M.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima,
S. Chem. Phys. Lett. 2001, 347, 23.
(11) (a) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto,
S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477. (b) Sun, D.; Tham,
F. S.; Reed, C. A.; Chaker, L.; Burgess, M.; Boyd, P. D. W. J. Am. Chem.
Soc. 2000, 122, 10704. (c) Gil-Ram´ırez, G.; Karlen, S. D.; Shundo, A.;
Porfyrakis, K.; Ito, Y.; Briggs, G. A. D.; Morton, J. J. L.; Anderson, H. L.
Org. Lett. 2010, 12, 3544.
C60 in a cooperative manner. Interestingly, the porphyrin barrels in
the crystal are interconnected through extracapsular C60 molecules
that interact with their concave faces, forming an infinite three-
dimensional grid structure (Figure S9).
In summary, the porphyrin barrel 1 was synthesized via a concise
synthetic route. This barrel exhibits an effective electronic interac-
tion over the molecule as well as an encapsulating ability toward
JA107814S
9
J. AM. CHEM. SOC. VOL. 132, NO. 46, 2010 16357