T. P. Thomas et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6250–6253
6253
relevant concentrations. XTT assay21 of PDA and PDB showed that
these prodrugs are not cytotoxic up to 1 M in the neuronal cell
Table 1
Comparison of the rate of hydrolysis of PDB by different plasmas, human BCE and HSA
l
lines SK-NSH and SH-SY5Y (Fig. 8). This suggests that neither the
prodrugs nor the linker moiety that is released in the serum-con-
taining medium during the 3 days incubation is cytotoxic.
In summary, we have demonstrated differential plasma hydro-
lytic activities for two novel morphine prodrugs carrying chemi-
cally functional 3-substituted groups. Future studies will focus on
the pharmacokinetics of the conjugates administered individually
or as a mixture. The prodrugs can be further utilized for conjuga-
tion to nanoparticles such as the neutralized and non-cytotoxic
dendrimers,22,23 which may allow improved drug solubility,
payload, pharmacokinetics, and controlled release.
Plasma/enzyme MP release rate MP release
Adult blood Projected
source
(nmol/min/ml) rate
g/min/ml)
(vol, ml)
release
(l
(mg/h/adult)
Mouse
Rat
Guinea Pig
Human
BCE
20.9
4.2
2.9
1.1
0.8
0.3
5.97
1.19
0.83
0.31
0.23
0.10
1.5
25
0.54
1.8
25
1.2
4000
74.5
HSA
The data is derived from the 0–15 min time points at which time the rates were
linear for all samples (Fig. 6). The reaction mixture contained an initial amount of
37.5 nmol of PDB and 150 ll plasma/enzyme samples in a total volume of 300 ll.
The rates given are per ml of plasma, or enzyme samples at known levels in human
plasma.
Acknowledgment
This project has been funded with Federal funds from the
Defense Advanced Research Projects Agency –DOD, under award
W911NF-07-1-0437.
120
100
Supplementary data
80
SK-NSH, PDA
SK-NSH, PDB
SH-SY5Y, PDA
Supplementary data associated with this article can be found, in
60
SH-SY5Y, PDB
References and notes
40
1. Lugo, R. A.; Kern, S. E. J. Pain Palliat Care Pharmacother. 2002, 16, 5.
2. Osborne, R.; Joel, S.; Trew, D.; Slevin, M. Clin. Pharmacol. Ther. 1990, 47, 12.
3. Smith, M. T.; Watt, J. A.; Cramond, T. Life Sci. 1990, 47, 579.
4. Faura, C. C.; Collins, S. L.; Moore, R. A.; McQuay, H. J. Pain 1998, 74, 43.
5. Mignat, C.; Heber, D.; Schlicht, H.; Ziegler, A. J. Pharm. Sci. 1996, 85, 690.
6. Wang, J. J.; Hung, C. F.; Yeh, C. H.; Fang, J. Y. J. Drug Target 2008, 16, 294.
7. Wang, J. J.; Sung, K. C.; Yeh, C. H.; Fang, J. Y. Int. J. Pharm. 2008, 353, 95.
8. Thomas, T. P.; Shukla, R.; Majoros, I. J.; Myc, A.; Baker, J. R., Jr. In
Nanobiotechnology: Concepts, Methods and Perspectives; Mirkin, Ed.; Wiley-
VCH, 2007.
20
0
0
200
400
600
800
1000
[Pro-drug], nM
Figure 8. Lack of cytotoxicity of PDA and PDB in SK-NSH and SH-SY5Y cell lines.
Cells cultured in 96-well plates were incubated with different concentrations of
pro-drugs for 3 days and the cell cytotoxicity was quantified by XTT assay.
9. Lurie, I. S.; Toske, S. G. J. Chromatogr., A 2008, 1188, 322.
10. Bosch, M. E.; Sanchez, A. R.; Rojas, F. S.; Ojeda, C. B. J. Pharm. Biomed. Anal. 2007,
43, 799.
11. McDowall, R. D. J. Chromatogr. 1989, 492, 3.
12. Childers, S. R. Life Sci. 1991, 48, 1991.
from the known BCE hydrolysis of heroin which carries an acetate
group at the 3-OH group of morphine.19
13. Yu, V. C.; Richards, M. L.; Sadee, W. J. Biol. Chem. 1986, 261, 1065.
14. Li, B.; Sedlacek, M.; Manoharan, I.; Boopathy, R.; Duysen, E. G.; Masson, P.;
Lockridge, O. Biochem. Pharmacol. 2005, 70, 1673.
To verify the role of carboxyl esterase in mediating the hydroly-
sis of prodrugs A and B, we tested the effect of the carboxyl ester-
ase inhibitor benzil on plasma-induced morphine release.16,20 As
shown in Figure 7, benzil inhibited morphine release from PDB in
a dose-dependent fashion, suggesting the role of carboxyl esterase
in PDB hydrolysis. However, under similar conditions of incuba-
tions, the rapid release of morphine from PDA was not inhibited
by benzil (results not shown), suggesting possible high carboxyl
esterase affinity for PDA versus benzil, or the role of other esterases
in PDA’s hydrolysis.
Table 1 facilitates comparison of the levels of morphine that can
be achieved by various species, based on their adult blood volumes
assuming the administration of PDB doses in excess to the desired
release.
In order for the synthesized prodrugs to be useful for biological
application, it is important that they do not induce cytotoxicity at
15. Groth, L.; Jørgensen, A.; Steffansen, B.; Christrup, L. L. Int. J. Pharm. 1997, 154,
149.
16. Redinbo, M. R.; Potter, P. M. Drug Discovery Today 2005, 10, 313.
17. Smolen, A.; Eckerson, H. W.; Gan, K. N.; Hailat, N.; La Du, B. N. Drug Metab.
Dispos. 1991, 19, 107.
18. Guemei, A. A.; Cottrell, J.; Band, R.; Hehman, H.; Prudhomme, M.; Pavlov, M. V.;
Grem, J. L.; Ismail, A. S.; Bowen, D.; Taylor, R. E.; Takimoto, C. H. Cancer
Chemother. Pharmacol. 2001, 47, 283.
19. Lockridge, O.; Mottershaw-Jackson, N.; Eckerson, H. W.; La Du, B. N. J.
Pharmacol. Exp. Ther. 1980, 215, 1.
20. Hyatt, J. L.; Stacy, V.; Wadkins, R. M.; Yoon, K. J.; Wierdl, M.; Edwards, C. C.;
Zeller, M.; Hunter, A. D.; Danks, M. K.; Crundwell, G.; Potter, P. M. J. Med. Chem.
2005, 48, 5543.
21. Thomas, T. P.; Majoros, I. J.; Kotlyar, A.; Kukowska-Latallo, J. F.; Bielinska, A.;
Myc, A.; Baker, J. R., Jr. J. Med. Chem. 2005, 48, 3729.
22. Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.;
Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R., Jr. Cancer Res. 2005, 65,
5317.
23. Thomas, T. P.; Kukowska-Latallo, J. R. In Dendrimer Based Nanomedicine;
Majoros, I. J., Baker, J. R., Jr., Eds.; Panstanford, 2008; p 175.